Do you want to publish a course? Click here

A markovian random walk model of epidemic spreading

128   0   0.0 ( 0 )
 Added by Thomas Michelitsch
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time markovian walk governed by his specific transition matrix. With this assumption, we first derive an upper bound for the reproduction numbers. Then we assume that a walker is in one of the states: susceptible, infectious, or recovered. An infectious walker remains infectious during a certain characteristic time. If an infectious walker meets a susceptible one on the same node there is a certain probability for the susceptible walker to get infected. By implementing this hypothesis in computer simulations we study the space-time evolution of the emerging infection patterns. Generally, random walk approaches seem to have a large potential to study epidemic spreading and to identify the pertinent parameters in epidemic dynamics.



rate research

Read More

A general formalism is introduced to allow the steady state of non-Markovian processes on networks to be reduced to equivalent Markovian processes on the same substrates. The example of an epidemic spreading process is considered in detail, where all the non-Markovian aspects are shown to be captured within a single parameter, the effective infection rate. Remarkably, this result is independent of the topology of the underlying network, as demonstrated by numerical simulations on two-dimensional lattices and various types of random networks. Furthermore, an analytic approximation for the effective infection rate is introduced, which enables the calculation of the critical point and of the critical exponents for the non-Markovian dynamics.
A model for epidemic spreading on rewiring networks is introduced and analyzed for the case of scale free steady state networks. It is found that contrary to what one would have naively expected, the rewiring process typically tends to suppress epidemic spreading. In particular it is found that as in static networks, rewiring networks with degree distribution exponent $gamma >3$ exhibit a threshold in the infection rate below which epidemics die out in the steady state. However the threshold is higher in the rewiring case. For $2<gamma leq 3$ no such threshold exists, but for small infection rate the steady state density of infected nodes (prevalence) is smaller for rewiring networks.
Models of disease spreading are critical for predicting infection growth in a population and evaluating public health policies. However, standard models typically represent the dynamics of disease transmission between individuals using macroscopic parameters that do not accurately represent person-to-person variability. To address this issue, we present a dynamic network model that provides a straightforward way to incorporate both disease transmission dynamics at the individual scale as well as the full spatiotemporal history of infection at the population scale. We find that disease spreads through a social network as a traveling wave of infection, followed by a traveling wave of recovery, with the onset and dynamics of spreading determined by the interplay between disease transmission and recovery. We use these insights to develop a scaling theory that predicts the dynamics of infection for diverse diseases and populations. Furthermore, we show how spatial heterogeneities in susceptibility to infection can either exacerbate or quell the spread of disease, depending on its infectivity. Ultimately, our dynamic network approach provides a simple way to model disease spreading that unifies previous findings and can be generalized to diverse diseases, containment strategies, seasonal conditions, and community structures.
We consider an epidemic process on adaptive activity-driven temporal networks, with adaptive behaviour modelled as a change in activity and attractiveness due to infection. By using a mean-field approach, we derive an analytical estimate of the epidemic threshold for SIS and SIR epidemic models for a general adaptive strategy, which strongly depends on the correlations between activity and attractiveness in the susceptible and infected states. We focus on strong social distancing, implementing two types of quarantine inspired by recent real case studies: an active quarantine, in which the population compensates the loss of links rewiring the ineffective connections towards non-quarantining nodes, and an inactive quarantine, in which the links with quarantined nodes are not rewired. Both strategies feature the same epidemic threshold but they strongly differ in the dynamics of active phase. We show that the active quarantine is extremely less effective in reducing the impact of the epidemic in the active phase compared to the inactive one, and that in SIR model a late adoption of measures requires inactive quarantine to reach containment.
81 - Nadia Loy , Andrea Tosin 2021
In this paper, we propose a Boltzmann-type kinetic model of the spreading of an infectious disease on a network. The latter describes the connections among countries, cities or districts depending on the spatial scale of interest. The disease transmission is represented in terms of the viral load of the individuals and is mediated by social contacts among them, taking into account their displacements across the nodes of the network. We formally derive the hydrodynamic equations for the density and the mean viral load of the individuals on the network and we analyse the large-time trends of these quantities with special emphasis on the cases of blow-up or eradication of the infection. By means of numerical tests, we also investigate the impact of confinement measures, such as quarantine or localised lockdown, on the diffusion of the disease on the network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا