Do you want to publish a course? Click here

Infection percolation: A dynamic network model of disease spreading

75   0   0.0 ( 0 )
 Added by Sujit Datta
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Models of disease spreading are critical for predicting infection growth in a population and evaluating public health policies. However, standard models typically represent the dynamics of disease transmission between individuals using macroscopic parameters that do not accurately represent person-to-person variability. To address this issue, we present a dynamic network model that provides a straightforward way to incorporate both disease transmission dynamics at the individual scale as well as the full spatiotemporal history of infection at the population scale. We find that disease spreads through a social network as a traveling wave of infection, followed by a traveling wave of recovery, with the onset and dynamics of spreading determined by the interplay between disease transmission and recovery. We use these insights to develop a scaling theory that predicts the dynamics of infection for diverse diseases and populations. Furthermore, we show how spatial heterogeneities in susceptibility to infection can either exacerbate or quell the spread of disease, depending on its infectivity. Ultimately, our dynamic network approach provides a simple way to model disease spreading that unifies previous findings and can be generalized to diverse diseases, containment strategies, seasonal conditions, and community structures.



rate research

Read More

In this work we study a modified Susceptible-Infected-Susceptible (SIS) model in which the infection rate $lambda$ decays exponentially with the number of reinfections $n$, saturating after $n=l$. We find a critical decaying rate $epsilon_{c}(l)$ above which a finite fraction of the population becomes permanently infected. From the mean-field solution and computer simulations on hypercubic lattices we find evidences that the upper critical dimension is 6 like in the SIR model, which can be mapped in ordinary percolation.
Percolation theory is an approach to study vulnerability of a system. We develop analytical framework and analyze percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of $n$ classic ErdH{o}s-R{e}nyi (ER) networks, where each network depends on the same number $m$ of other networks, i.e., a random regular network of interdependent ER networks. In contrast to a emph{treelike} NetONet in which the size of the largest connected cluster (mutual component) depends on $n$, the loops in the RR NetONet cause the largest connected cluster to depend only on $m$. We also analyzed the extremely vulnerable feedback condition of coupling. In the case of ER networks, the NetONet only exhibits two phases, a second order phase transition and collapse, and there is no first phase transition regime unlike the no feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when $q$ is large and second order phase transition when $q$ is small. Our results can help in designing robust interdependent systems.
We propose a maximally disassortative (MD) network model which realizes a maximally negative degree-degree correlation, and study its percolation transition to discuss the effect of a strong degree-degree correlation on the percolation critical behaviors. Using the generating function method for bipartite networks, we analytically derive the percolation threshold and the order parameter critical exponent, $beta$. For the MD scale-free networks, whose degree distribution is $P(k) sim k^{-gamma}$, we show that the exponent, $beta$, for the MD networks and corresponding uncorrelated networks are same for $gamma>3$ but are different for $2<gamma<3$. A strong degree-degree correlation significantly affects the percolation critical behavior in heavy-tailed scale-free networks. Our analytical results for the critical exponents are numerically confirmed by a finite-size scaling argument.
We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time markovian walk governed by his specific transition matrix. With this assumption, we first derive an upper bound for the reproduction numbers. Then we assume that a walker is in one of the states: susceptible, infectious, or recovered. An infectious walker remains infectious during a certain characteristic time. If an infectious walker meets a susceptible one on the same node there is a certain probability for the susceptible walker to get infected. By implementing this hypothesis in computer simulations we study the space-time evolution of the emerging infection patterns. Generally, random walk approaches seem to have a large potential to study epidemic spreading and to identify the pertinent parameters in epidemic dynamics.
We study a general epidemic model with arbitrary recovery rate distributions. This simple deviation from the standard setup is sufficient to prove that heterogeneity in the dynamical parameters can be as important as the more studied structural heterogeneity. Our analytical solution is able to predict the shift in the critical properties induced by heterogeneous recovery rates. Additionally, we show that the critical value of infectivity tends to be smaller than the one predicted by quenched mean-field approaches in the homogeneous case and that it can be linked to the variance of the recovery rates. We then illustrate the role of dynamical--structural correlations, which allow for a complete change in the critical behavior. We show that it is possible for a power-law network topology to behave similarly to a homogeneous structure by an appropriate tuning of its recovery rates, and vice versa. Finally, we show how heterogeneity in recovery rates affects the network localization properties of the spreading process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا