Do you want to publish a course? Click here

Epidemic spreading in evolving networks

136   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

A model for epidemic spreading on rewiring networks is introduced and analyzed for the case of scale free steady state networks. It is found that contrary to what one would have naively expected, the rewiring process typically tends to suppress epidemic spreading. In particular it is found that as in static networks, rewiring networks with degree distribution exponent $gamma >3$ exhibit a threshold in the infection rate below which epidemics die out in the steady state. However the threshold is higher in the rewiring case. For $2<gamma leq 3$ no such threshold exists, but for small infection rate the steady state density of infected nodes (prevalence) is smaller for rewiring networks.



rate research

Read More

We consider an epidemic process on adaptive activity-driven temporal networks, with adaptive behaviour modelled as a change in activity and attractiveness due to infection. By using a mean-field approach, we derive an analytical estimate of the epidemic threshold for SIS and SIR epidemic models for a general adaptive strategy, which strongly depends on the correlations between activity and attractiveness in the susceptible and infected states. We focus on strong social distancing, implementing two types of quarantine inspired by recent real case studies: an active quarantine, in which the population compensates the loss of links rewiring the ineffective connections towards non-quarantining nodes, and an inactive quarantine, in which the links with quarantined nodes are not rewired. Both strategies feature the same epidemic threshold but they strongly differ in the dynamics of active phase. We show that the active quarantine is extremely less effective in reducing the impact of the epidemic in the active phase compared to the inactive one, and that in SIR model a late adoption of measures requires inactive quarantine to reach containment.
Time-varying network topologies can deeply influence dynamical processes mediated by them. Memory effects in the pattern of interactions among individuals are also known to affect how diffusive and spreading phenomena take place. In this paper we analyze the combined effect of these two ingredients on epidemic dynamics on networks. We study the susceptible-infected-susceptible (SIS) and the susceptible-infected-removed (SIR) models on the recently introduced activity-driven networks with memory. By means of an activity-based mean-field approach we derive, in the long time limit, analytical predictions for the epidemic threshold as a function of the parameters describing the distribution of activities and the strength of the memory effects. Our results show that memory reduces the threshold, which is the same for SIS and SIR dynamics, therefore favouring epidemic spreading. The theoretical approach perfectly agrees with numerical simulations in the long time asymptotic regime. Strong aging effects are present in the preasymptotic regime and the epidemic threshold is deeply affected by the starting time of the epidemics. We discuss in detail the origin of the model-dependent preasymptotic corrections, whose understanding could potentially allow for epidemic control on correlated temporal networks.
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For a given social distancing individual strategies, we establish the epidemic reproduction number $R_0$ which can be used to identify network vulnerability and inform vaccination policies. In the second part of the paper we study the equilibrium of the social distancing game, in which individuals choose their social distancing level according to an anticipated global infection rate, which then must equal the actual infection rate following their choices. We give conditions for the existence and uniqueness of equilibrium. For the case of random regular graphs, we show that voluntary social distancing will always be socially sub-optimal.
213 - Shogo Mizutaka , Kizashi Mori , 2021
We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network with tunable degree correlation, we identify a discontinuous transition that is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises the epidemic threshold, respectively. For networks with a strongly positive degree correlation, the mean-field treatment predicts the emergence of two discontinuous jumps in the steady-state infected density. To test the mean-field treatment, we provide approximate master equations of the present model, which accurately describe the synergistic SIS dynamics. We quantitatively confirm all qualitative predictions of the mean-field treatment in numerical evaluations of the approximate master equations.
We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time markovian walk governed by his specific transition matrix. With this assumption, we first derive an upper bound for the reproduction numbers. Then we assume that a walker is in one of the states: susceptible, infectious, or recovered. An infectious walker remains infectious during a certain characteristic time. If an infectious walker meets a susceptible one on the same node there is a certain probability for the susceptible walker to get infected. By implementing this hypothesis in computer simulations we study the space-time evolution of the emerging infection patterns. Generally, random walk approaches seem to have a large potential to study epidemic spreading and to identify the pertinent parameters in epidemic dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا