Do you want to publish a course? Click here

Six Attributes of Unhealthy Conversation

80   0   0.0 ( 0 )
 Added by Ilan Price
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a new dataset of approximately 44000 comments labeled by crowdworkers. Each comment is labelled as either healthy or unhealthy, in addition to binary labels for the presence of six potentially unhealthy sub-attributes: (1) hostile; (2) antagonistic, insulting, provocative or trolling; (3) dismissive; (4) condescending or patronising; (5) sarcastic; and/or (6) an unfair generalisation. Each label also has an associated confidence score. We argue that there is a need for datasets which enable research based on a broad notion of unhealthy online conversation. We build this typology to encompass a substantial proportion of the individual comments which contribute to unhealthy online conversation. For some of these attributes, this is the first publicly available dataset of this scale. We explore the quality of the dataset, present some summary statistics and initial models to illustrate the utility of this data, and highlight limitations and directions for further research.



rate research

Read More

59 - Penghui Wei , Nan Xu , Wenji Mao 2019
Automatically verifying rumorous information has become an important and challenging task in natural language processing and social media analytics. Previous studies reveal that peoples stances towards rumorous messages can provide indicative clues for identifying the veracity of rumors, and thus determining the stances of public reactions is a crucial preceding step for rumor veracity prediction. In this paper, we propose a hierarchical multi-task learning framework for jointly predicting rumor stance and veracity on Twitter, which consists of two components. The bottom component of our framework classifies the stances of tweets in a conversation discussing a rumor via modeling the structural property based on a novel graph convolutional network. The top component predicts the rumor veracity by exploiting the temporal dynamics of stance evolution. Experimental results on two benchmark datasets show that our method outperforms previous methods in both rumor stance classification and veracity prediction.
Many conversation datasets have been constructed in the recent years using crowdsourcing. However, the data collection process can be time consuming and presents many challenges to ensure data quality. Since language generation has improved immensely in recent years with the advancement of pre-trained language models, we investigate how such models can be utilized to generate entire conversations, given only a summary of a conversation as the input. We explore three approaches to generate summary grounded conversations, and evaluate the generated conversations using automatic measures and human judgements. We also show that the accuracy of conversation summarization can be improved by augmenting a conversation summarization dataset with generated conversations.
Many real-world open-domain conversation applications have specific goals to achieve during open-ended chats, such as recommendation, psychotherapy, education, etc. We study the problem of imposing conversational goals on open-domain chat agents. In particular, we want a conversational system to chat naturally with human and proactively guide the conversation to a designated target subject. The problem is challenging as no public data is available for learning such a target-guided strategy. We propose a structured approach that introduces coarse-grained keywords to control the intended content of system responses. We then attain smooth conversation transition through turn-level supervised learning, and drive the conversation towards the target with discourse-level constraints. We further derive a keyword-augmented conversation dataset for the study. Quantitative and human evaluations show our system can produce meaningful and effective conversations, significantly improving over other approaches.
Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-the-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots.
85 - Hui Liu , Zhan Shi , Xiaodan Zhu 2021
Conversation disentanglement aims to separate intermingled messages into detached sessions, which is a fundamental task in understanding multi-party conversations. Existing work on conversation disentanglement relies heavily upon human-annotated datasets, which are expensive to obtain in practice. In this work, we explore to train a conversation disentanglement model without referencing any human annotations. Our method is built upon a deep co-training algorithm, which consists of two neural networks: a message-pair classifier and a session classifier. The former is responsible for retrieving local relations between two messages while the latter categorizes a message to a session by capturing context-aware information. Both networks are initialized respectively with pseudo data built from an unannotated corpus. During the deep co-training process, we use the session classifier as a reinforcement learning component to learn a session assigning policy by maximizing the local rewards given by the message-pair classifier. For the message-pair classifier, we enrich its training data by retrieving message pairs with high confidence from the disentangled sessions predicted by the session classifier. Experimental results on the large Movie Dialogue Dataset demonstrate that our proposed approach achieves competitive performance compared to the previous supervised methods. Further experiments show that the predicted disentangled conversations can promote the performance on the downstream task of multi-party response selection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا