Do you want to publish a course? Click here

Retrieval Augmentation Reduces Hallucination in Conversation

115   0   0.0 ( 0 )
 Added by Kurt Shuster
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-the-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots.



rate research

Read More

Deep neural networks have achieved state-of-the-art results in various vision and/or language tasks. Despite the use of large training datasets, most models are trained by iterating over single input-output pairs, discarding the remaining examples for the current prediction. In this work, we actively exploit the training data, using the information from nearest training examples to aid the prediction both during training and testing. Specifically, our approach uses the target of the most similar training example to initialize the memory state of an LSTM model, or to guide attention mechanisms. We apply this approach to image captioning and sentiment analysis, respectively through image and text retrieval. Results confirm the effectiveness of the proposed approach for the two tasks, on the widely used Flickr8 and IMDB datasets. Our code is publicly available at http://github.com/RitaRamo/retrieval-augmentation-nn.
Many real-world open-domain conversation applications have specific goals to achieve during open-ended chats, such as recommendation, psychotherapy, education, etc. We study the problem of imposing conversational goals on open-domain chat agents. In particular, we want a conversational system to chat naturally with human and proactively guide the conversation to a designated target subject. The problem is challenging as no public data is available for learning such a target-guided strategy. We propose a structured approach that introduces coarse-grained keywords to control the intended content of system responses. We then attain smooth conversation transition through turn-level supervised learning, and drive the conversation towards the target with discourse-level constraints. We further derive a keyword-augmented conversation dataset for the study. Quantitative and human evaluations show our system can produce meaningful and effective conversations, significantly improving over other approaches.
Generating qualitative responses has always been a challenge for human-computer dialogue systems. Existing dialogue systems generally derive from either retrieval-based or generative-based approaches, both of which have their own pros and cons. Despite the natural idea of an ensemble model of the two, existing ensemble methods only focused on leveraging one approach to enhance another, we argue however that they can be further mutually enhanced with a proper training strategy. In this paper, we propose ensembleGAN, an adversarial learning framework for enhancing a retrieval-generation ensemble model in open-domain conversation scenario. It consists of a language-model-like generator, a ranker generator, and one ranker discriminator. Aiming at generating responses that approximate the ground-truth and receive high ranking scores from the discriminator, the two generators learn to generate improved highly relevant responses and competitive unobserved candidates respectively, while the discriminative ranker is trained to identify true responses from adversarial ones, thus featuring the merits of both generator counterparts. The experimental results on a large short-text conversation data demonstrate the effectiveness of the ensembleGAN by the amelioration on both human and automatic evaluation metrics.
Despite continuously improving performance, contemporary image captioning models are prone to hallucinating objects that are not actually in a scene. One problem is that standard metrics only measure similarity to ground truth captions and may not fully capture image relevance. In this work, we propose a new image relevance metric to evaluate current models with veridical visual labels and assess their rate of object hallucination. We analyze how captioning model architectures and learning objectives contribute to object hallucination, explore when hallucination is likely due to image misclassification or language priors, and assess how well current sentence metrics capture object hallucination. We investigate these questions on the standard image captioning benchmark, MSCOCO, using a diverse set of models. Our analysis yields several interesting findings, including that models which score best on standard sentence metrics do not always have lower hallucination and that models which hallucinate more tend to make errors driven by language priors.
This paper presents our pioneering effort for emotion recognition in conversation (ERC) with pre-trained language models. Unlike regular documents, conversational utterances appear alternately from different parties and are usually organized as hierarchical structures in previous work. Such structures are not conducive to the application of pre-trained language models such as XLNet. To address this issue, we propose an all-in-one XLNet model, namely DialogXL, with enhanced memory to store longer historical context and dialog-aware self-attention to deal with the multi-party structures. Specifically, we first modify the recurrence mechanism of XLNet from segment-level to utterance-level in order to better model the conversational data. Second, we introduce dialog-aware self-attention in replacement of the vanilla self-attention in XLNet to capture useful intra- and inter-speaker dependencies. Extensive experiments are conducted on four ERC benchmarks with mainstream models presented for comparison. The experimental results show that the proposed model outperforms the baselines on all the datasets. Several other experiments such as ablation study and error analysis are also conducted and the results confirm the role of the critical modules of DialogXL.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا