Do you want to publish a course? Click here

Dispersive coupling between MoSe2 and a zero-dimensional integrated nanocavity

95   0   0.0 ( 0 )
 Added by Arka Majumdar
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Establishing a coherent interaction between a material resonance and an optical cavity is a necessary first step for the development of semiconductor quantum optics. Here we demonstrate a coherent interaction between the neutral exciton in monolayer MoSe2 and a zero-dimensional, small mode volume nanocavity. This is observed through a dispersive shift of the cavity resonance when the exciton-cavity detuning is decreased, with an estimated exciton-cavity coupling of ~4.3 meV and a cooperativity of C~3.4 at 80 Kelvin. This coupled exciton-cavity platform is expected to reach the strong light-matter coupling regime (i.e., with C~380) at 4 Kelvin for applications in quantum or ultra-low power nanophotonics.

rate research

Read More

Zero modes are symmetry protected ones whose energy eigenvalues have zero real parts. In Hermitian arrays, they arise as a consequence of the sublattice symmetry, implying that they are dark modes. In non-Hermitian systems, that naturally emerge in gain/loss optical cavities, particle-hole symmetry prevails instead; the resulting zero modes are no longer dark but feature ${pi}/2$ phase jumps between adjacent cavities. Here we report on the direct observation of zero modes in a non-Hermitian three coupled photonic crystal nanocavity array containing quantum wells. Unlike the Hermitian counterparts, the non-Hermitian zero modes can only be observed for small sublattice detuning, and they can be identified through far-field imaging and spectral filtering of the photoluminescence at selected pump locations. We explain the zero mode coalescence as a parity-time phase transition for small coupling. These zero modes are robust against coupling disorder, and can be used for laser mode engineering and photonic computing.
We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements we infer a single-atom cooperativity of up to $12$ for FFPCs longer than $200 mu$m in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate distortions of the potential due to the fibers. Home-built fiber feedthroughs connect the FFPC to external optics, and an integrated nanopositioning system affords the possibility of retracting or realigning the cavity without breaking vacuum.
Spin-dependent, directional light-matter interactions form the basis of chiral quantum networks. In the solid state, quantum emitters commonly possess circularly polarised optical transitions with spin-dependent handedness. We demonstrate theoretically that spin-dependent chiral coupling can be realised by embedding such an emitter in a waveguide-coupled nanocavity, which supports two near-degenerate, orthogonally-polarised cavity modes. The chiral behaviour arises due to direction-dependent interference between the cavity modes upon coupling to two single-mode output waveguides. Notably, an experimentally realistic cavity design simultaneously supports near-unity chiral contrast, efficient ($beta > 0.95$) waveguide coupling and enhanced light-matter interaction strength (Purcell factor $F_P > 60$). In combination, these parameters could enable the development of highly coherent spin-photon interfaces, and may even allow access to the chiral strong-coupling regime using integrated nano-photonic devices.
272 - Z. Vernon , M. Liscidini , 2016
Single photon-level quantum frequency conversion has recently been demonstrated using silicon nitride microring resonators. The resonance enhancement offered by such systems enables high-efficiency translation of quantum states of light across wide frequency ranges at sub-watt pump powers. Using a quantum-mechanical Hamiltonian formalism, we present a detailed theoretical analysis of the conversion dynamics in these systems, and show that they are capable of converting single- and multi-photon quantum states. Analytic formulas for the conversion efficiency, spectral conversion probability density, and pump power requirements are derived which are in good agreement with previous theoretical and experimental results. We show that with only modest improvement to the state of the art, efficiencies exceeding 95% are achievable using less than 100 mW of pump power. At the critical driving strength that yields maximum conversion efficiency, the spectral conversion probability density is shown to exhibit a flat-topped peak, indicating a range of insensitivity to the spectrum of a single photon input. Two alternate theoretical approaches are presented to study the conversion dynamics: a dressed mode approach that yields a better intuitive picture of the conversion process, and a study of the temporal dynamics of the participating modes in the resonator, which uncovers a regime of Rabi-like coherent oscillations of single photons between two different frequency modes. This oscillatory regime arises from the strong coupling of distinct frequency modes mediated by coherent pumps.
Dissipative and dispersive optomechanical couplings are experimentally observed in a photonic crystal split-beam nanocavity optimized for detecting nanoscale sources of torque. Dissipative coupling of up to approximately $500$ MHz/nm and dispersive coupling of $2$ GHz/nm enable measurements of sub-pg torsional and cantilever-like mechanical resonances with a thermally-limited torque detection sensitivity of 1.2$times 10^{-20} text{N} , text{m}/sqrt{text{Hz}}$ in ambient conditions and 1.3$times 10^{-21} text{N} , text{m}/sqrt{text{Hz}}$ in low vacuum. Interference between optomechanical coupling mechanisms is observed to enhance detection sensitivity and generate a mechanical-mode-dependent optomechanical wavelength response.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا