No Arabic abstract
Spin-dependent, directional light-matter interactions form the basis of chiral quantum networks. In the solid state, quantum emitters commonly possess circularly polarised optical transitions with spin-dependent handedness. We demonstrate theoretically that spin-dependent chiral coupling can be realised by embedding such an emitter in a waveguide-coupled nanocavity, which supports two near-degenerate, orthogonally-polarised cavity modes. The chiral behaviour arises due to direction-dependent interference between the cavity modes upon coupling to two single-mode output waveguides. Notably, an experimentally realistic cavity design simultaneously supports near-unity chiral contrast, efficient ($beta > 0.95$) waveguide coupling and enhanced light-matter interaction strength (Purcell factor $F_P > 60$). In combination, these parameters could enable the development of highly coherent spin-photon interfaces, and may even allow access to the chiral strong-coupling regime using integrated nano-photonic devices.
We consider the interaction of hydrogen-like atoms with a strong laser field and show that the strong field approximation and all its variants may be grouped into a set of families of approximation schemes. This is done by introducing an ansatz describing the electron wave packet as the sum of the initial state wave function times a phase factor and a function which is the perturbative solution in the Coulomb potential of an inhomogeneous time-dependent Schrodinger equation. It is the phase factor that characterizes a given family. In each of these families, the velocity and length gauge version of the approximation scheme lead to the same results at each order in the Coulomb potential. By contrast, irrespective of the gauge, approximation schemes belonging to different families give different results. Furthermore, this new formulation of the strong field approximations allows us to gain deeper insight into the validity of the strong field approximation schemes. In particular, we address two important questions: the role of the Coulomb potential in the output channel and the convergence of the perturbative series in the Coulomb potential. In all the physical situations we consider here, our results are compared to those obtained by solving numerically the time-dependent Schrodinger equation.
Despite tremendous advances in the fundamentals and applications of cavity quantum electrodynamics (CQED), investigations in this field have primarily been limited to optical cavities composed of purely dielectric materials. Here, we demonstrate a hybrid metal-dielectric nanocavity design and realize it in the InAs/GaAs quantum photonics platform utilizing angled rotational metal evaporation. Key features of our nanometallic light-matter interface include: (i) order of magnitude reduction in mode volume compared to that of leading photonic crystal CQED systems; (ii) surface-emitting nanoscale cylindrical geometry and therefore good collection efficiency; and finally (iii) strong and broadband spontaneous emission rate enhancement (Purcell factor ~ 8) of single photons. This light-matter interface may play an important role in quantum technologies.
The topological structure associated with the branchpoint singularity around an exceptional point (EP) provides new tools for controlling the propagation of electromagnetic waves and their interaction with matter. To date, observation of EPs in light-matter interactions has remained elusive and has hampered further progress in applications of EP physics. Here, we demonstrate the emergence of EPs in the electrically controlled interaction of light with a collection of organic molecules in the terahertz regime at room temperature. We show, using time-domain terahertz spectroscopy, that the intensity and phase of terahertz pulses can be controlled by a gate voltage which drives the device across the EP. This fully electrically-tuneable system allows reconstructing the Riemann surface associated with the complex energy landscape and provides a topological control of light by tuning the loss-imbalance and frequency detuning of interacting modes. We anticipate that our work could pave the way for new means of dynamic control on the intensity and phase of terahertz field, developing topological optoelectronics, and studying the manifestations of EP physics in the quantum correlations of the light emitted by a collection of emitters coupled to resonators.
The emerging field of on-chip integration of nanophotonic devices and cold atoms offers extremely-strong and pure light-matter interaction schemes, which may have profound impact on quantum information science. In this context, a long-standing obstacle is to achieve strong interaction between single atoms and single photons, while at the same time trap atoms in vacuum at large separation distances from dielectric surfaces. In this work, we study new waveguide geometries that challenge these conflicting objectives. The designed photonic crystal waveguide is expected to offer a good compromise, which additionally allows for easy manipulation of atomic clouds around the structure, while being tolerant to fabrication imperfections.
The integration of nanophotonics and atomic physics has been a long-sought goal that would open new frontiers for optical physics. Here, we report the development of the first integrated optical circuit with a photonic crystal capable of both localizing and interfacing atoms with guided photons in the device. By aligning the optical bands of a photonic crystal waveguide (PCW) with selected atomic transitions, our platform provides new opportunities for novel quantum transport and many-body phenomena by way of photon-mediated atomic interactions along the PCW. From reflection spectra measured with average atom number N = 1.1$pm$0.4, we infer that atoms are localized within the PCW by Casimir-Polder and optical dipole forces. The fraction of single-atom radiative decay into the PCW is $Gamma_{rm 1D}/Gamma$ = 0.32$pm$0.08, where $Gamma_{1D}$ is the rate of emission into the guided mode and $Gamma$ is the decay rate into all other channels. $Gamma_{rm 1D}/Gamma$ is quoted without enhancement due to an external cavity and is unprecedented in all current atom-photon interfaces.