Do you want to publish a course? Click here

Interdependent Diffusion: The social contagion of interacting beliefs

108   0   0.0 ( 0 )
 Added by James Houghton
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Social contagion is the process in which people adopt a belief, idea, or practice from a neighbor and pass it along to someone else. For over 100 years, scholars of social contagion have almost exclusively made the same implicit assumption: that only one belief, idea, or practice spreads through the population at a time. It is a default assumption that we dont bother to state, let alone justify. The assumption is so ingrained that our literature doesnt even have a word for whatever is to be diffused, because we have never needed to discuss more than one of them. But this assumption is obviously false. Millions of beliefs, ideas, and practices (lets call them diffusants) spread through social contagion every day. To assume that diffusants spread one at a time - or more generously, that they spread independently of one another - is to assume that interactions between diffusants have no influence on adoption patterns. This could be true, or it could be wildly off the mark. Weve never stopped to find out. This paper makes a direct comparison between the spread of independent and interdependent beliefs using simulations, observational data, and a 2400-subject laboratory experiment. I find that in assuming independence between diffusants, scholars have overlooked social processes that fundamentally change the outcomes of social contagion. Interdependence between beliefs generates polarization, irrespective of social network structure, homophily, demographics, politics, or any other commonly cited cause. It also coordinates structures of beliefs that can have both internal justification and social support without any grounding in external truth.



rate research

Read More

Here, we review the research we have done on social contagion. We describe the methods we have employed (and the assumptions they have entailed) in order to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a three degrees of influence property, and we review statistical approaches we have used to characterize inter-personal influence with respect to phenomena as diverse as obesity, smoking, cooperation, and happiness. We do not claim that this work is the final word, but we do believe that it provides some novel, informative, and stimulating evidence regarding social contagion in longitudinally followed networks. Along with other scholars, we are working to develop new methods for identifying causal effects using social network data, and we believe that this area is ripe for statistical development as current methods have known and often unavoidable limitations.
Influencing (and being influenced by) others indirectly through social networks is fundamental to all human societies. Whether this happens through the diffusion of rumors, viruses, opinions, or know-how, finding the source is of persistent interest to people and an algorithmic challenge of much current research interest. However, no study has considered the case of diffusion sources actively trying to avoid detection. By disregarding this assumption, we risk conflating intentional obfuscation from the fundamental limitations of source-finding algorithms. We close this gap by separating two mechanisms hiding diffusion sources-one stemming from the network topology itself and the other from strategic manipulation of the network. We find that identifying the source can be challenging even without foul play and, many times, it is easy to evade source-detection algorithms further. We show that hiding connections that were part of the viral cascade is far more effective than introducing fake individuals. Thus, efforts should focus on exposing concealed ties rather than planted fake entities, e.g., bots in social media; such exposure would drastically improve our chances of detecting the source of a social diffusion.
Current social networks are of extremely large-scale generating tremendous information flows at every moment. How information diffuse over social networks has attracted much attention from both industry and academics. Most of the existing works on information diffusion analysis are based on machine learning methods focusing on social network structure analysis and empirical data mining. However, the dynamics of information diffusion, which are heavily influenced by network users decisions, actions and their socio-economic interactions, is generally ignored by most of existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we derive the information diffusion dynamics in complete networks, uniform degree and non-uniform degree networks, with the highlight of two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network. We find that the dynamics of information diffusion over these three kinds of networks are scale-free and the same with each other when the network scale is sufficiently large. To verify our theoretical analysis, we perform simulations for the information diffusion over synthetic networks and real-world Facebook networks. Moreover, we also conduct experiment on Twitter hashtags dataset, which shows that the proposed game theoretic model can well fit and predict the information diffusion over real social networks.
We propose a stochastic model for the diffusion of topics entering a social network modeled by a Watts-Strogatz graph. Our model sets into play an implicit competition between these topics as they vie for the attention of users in the network. The dynamics of our model are based on notions taken from real-world OSNs like Twitter where users either adopt an exogenous topic or copy topics from their neighbors leading to endogenous propagation. When instantiated correctly, the model achieves a viral regime where a few topics garner unusually good response from the network, closely mimicking the behavior of real-world OSNs. Our main contribution is our description of how clusters of proximate users that have spoken on the topic merge to form a large giant component making a topic go viral. This demonstrates that it is not weak ties but actually strong ties that play a major part in virality. We further validate our model and our hypotheses about its behavior by comparing our simulation results with the results of a measurement study conducted on real data taken from Twitter.
In this big data era, more and more social activities are digitized thereby becoming traceable, and thus the studies of social networks attract increasing attention from academia. It is widely believed that social networks play important role in the process of information diffusion. However, the opposite question, i.e., how does information diffusion process rebuild social networks, has been largely ignored. In this paper, we propose a new framework for understanding this reversing effect. Specifically, we first introduce a novel information diffusion model on social networks, by considering two types of individuals, i.e., smart and normal individuals, and two kinds of messages, true and false messages. Since social networks consist of human individuals, who have self-learning ability, in such a way that the trust of an individual to one of its neighbors increases (or decreases) if this individual received a true (or false) message from that neighbor. Based on such a simple self-learning mechanism, we prove that a social network can indeed become smarter, in terms of better distinguishing the true message from the false one. Moreover, we observe the emergence of social stratification based on the new model, i.e., the true messages initially posted by an individual closer to the smart one can be forwarded by more others, which is enhanced by the self-learning mechanism. We also find the crossover advantage, i.e., interconnection between two chain networks can make the related individuals possessing higher social influences, i.e., their messages can be forwarded by relatively more others. We obtained these results theoretically and validated them by simulations, which help better understand the reciprocity between social networks and information diffusion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا