Do you want to publish a course? Click here

Supergroups, q-series and 3-manifolds

59   0   0.0 ( 0 )
 Added by Pavel Putrov
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce supergroup analogues of 3-manifold invariants $hat{Z}$, also known as homological blocks, which were previously considered for ordinary compact semisimple Lie groups. We focus on superunitary groups, and work out the case of SU(2|1) in details. Physically these invariants are realized as the index of BPS states of a system of intersecting fivebranes wrapping a 3-manifold in M-theory. As in the original case, the homological blocks are q-series with integer coefficients. We provide an explicit algorithm to calculate these q-series for a class of plumbed 3-manifolds and study quantum modularity and resurgence properties for some particular 3-manifolds. Finally, we conjecture a formula relating the $hat{Z}$ invariants and the quantum invariants constructed from a non-semisimple category of representation of the unrolled version of a quantum supergroup.



rate research

Read More

We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds S by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat connections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold S which is easily evaluated.
Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[M_3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.
We provide a physical definition of new homological invariants $mathcal{H}_a (M_3)$ of 3-manifolds (possibly, with knots) labeled by abelian flat connections. The physical system in question involves a 6d fivebrane theory on $M_3$ times a 2-disk, $D^2$, whose Hilbert space of BPS states plays the role of a basic building block in categorification of various partition functions of 3d $mathcal{N}=2$ theory $T[M_3]$: $D^2times S^1$ half-index, $S^2times S^1$ superconformal index, and $S^2times S^1$ topologically twisted index. The first partition function is labeled by a choice of boundary condition and provides a refinement of Chern-Simons (WRT) invariant. A linear combination of them in the unrefined limit gives the analytically continued WRT invariant of $M_3$. The last two can be factorized into the product of half-indices. We show how this works explicitly for many examples, including Lens spaces, circle fibrations over Riemann surfaces, and plumbed 3-manifolds.
We study 7D maximally supersymmetric Yang-Mills theory on 3-Sasakian manifolds. For manifolds whose hyper-Kahler cones are hypertoric we derive the perturbative part of the partition function. The answer involves a special function that counts integer lattice points in a rational convex polyhedral cone determined by hypertoric data. This also gives a more geometric structure to previous enumeration results of holomorphic functions in the literature. Based on physics intuition, we provide a factorisation result for such functions. The full proof of this factorisation using index calculations will be detailed in a forthcoming paper.
Using the ideas from the BPS/CFT correspondence, we give an explicit recursive formula for computing supersymmetric Wilson loop averages in 3d $mathcal{N}=2$ Yang-Mills-Chern-Simons $U(N)$ theory on the squashed sphere $S^3_b$ with one adjoint chiral and two antichiral fundamental multiplets, for specific values of Chern-Simons level $kappa_2$ and Fayet-Illiopoulos parameter $kappa_1$. For these values of $kappa_1$ and $kappa_2$ the north and south pole turn out to be completely independent, and therefore Wilson loop averages factorize into answers for the two constituent $D^2 times S^1$ theories. In particular, our formula provides results for the theory on the round sphere when the squashing is removed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا