Do you want to publish a course? Click here

Fivebranes and 3-manifold homology

57   0   0.0 ( 0 )
 Added by Pavel Putrov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds. In terms of 3d/3d correspondence, such invariants are given by the Q-cohomology of the Hilbert space of partially topologically twisted 3d N=2 theory T[M_3] on a Riemann surface with defects. We demonstrate this by concrete and explicit calculations in the case of monopole/Heegaard Floer homology and a 3-manifold analog of Khovanov-Rozansky link homology. The latter gives a categorification of Chern-Simons partition function. Some of the new key elements include the explicit form of the S-transform and a novel connection between categorification and a previously mysterious role of Eichler integrals in Chern-Simons theory.



rate research

Read More

We provide a physical definition of new homological invariants $mathcal{H}_a (M_3)$ of 3-manifolds (possibly, with knots) labeled by abelian flat connections. The physical system in question involves a 6d fivebrane theory on $M_3$ times a 2-disk, $D^2$, whose Hilbert space of BPS states plays the role of a basic building block in categorification of various partition functions of 3d $mathcal{N}=2$ theory $T[M_3]$: $D^2times S^1$ half-index, $S^2times S^1$ superconformal index, and $S^2times S^1$ topologically twisted index. The first partition function is labeled by a choice of boundary condition and provides a refinement of Chern-Simons (WRT) invariant. A linear combination of them in the unrefined limit gives the analytically continued WRT invariant of $M_3$. The last two can be factorized into the product of half-indices. We show how this works explicitly for many examples, including Lens spaces, circle fibrations over Riemann surfaces, and plumbed 3-manifolds.
We propose a way of computing 4-manifold invariants, old and new, as chiral correlation functions in half-twisted 2d $mathcal{N}=(0,2)$ theories that arise from compactification of fivebranes. Such formulation gives a new interpretation of some known statements about Seiberg-Witten invariants, such as the basic class condition, and gives a prediction for structural properties of the multi-monopole invariants and their non-abelian generalizations.
204 - Sergei Gukov , Du Pei 2015
We study complex Chern-Simons theory on a Seifert manifold $M_3$ by embedding it into string theory. We show that complex Chern-Simons theory on $M_3$ is equivalent to a topologically twisted supersymmetric theory and its partition function can be naturally regularized by turning on a mass parameter. We find that the dimensional reduction of this theory to 2d gives the low energy dynamics of vortices in four-dimensional gauge theory, the fact apparently overlooked in the vortex literature. We also generalize the relations between 1) the Verlinde algebra, 2) quantum cohomology of the Grassmannian, 3) Chern-Simons theory on $Sigmatimes S^1$ and 4) index of a spin$^c$ Dirac operator on the moduli space of flat connections to a new set of relations between 1) the equivariant Verlinde algebra for a complex group, 2) the equivariant quantum K-theory of the vortex moduli space, 3) complex Chern-Simons theory on $Sigma times S^1$ and 4) the equivariant index of a spin$^c$ Dirac operator on the moduli space of Higgs bundles.
70 - Dmitry Galakhov 2017
In this note we make an attempt to compare a cohomological theory of Hilbert spaces of ground states in the ${cal N}=(2,2)$ 2d Landau-Ginzburg theory in models describing link embeddings in ${mathbb{R}}^3$ to Khovanov and Khovanov-Rozansky homologies. To confirm the equivalence we exploit the invariance of Hilbert spaces of ground states for interfaces with respect to homotopy. In this attempt to study solitons and instantons in the Landau-Giznburg theory we apply asymptotic analysis also known in the literature as exact WKB method, spectral networks method, or resurgence. In particular, we associate instantons in LG model to specific WKB line configurations we call null-webs.
We introduce supergroup analogues of 3-manifold invariants $hat{Z}$, also known as homological blocks, which were previously considered for ordinary compact semisimple Lie groups. We focus on superunitary groups, and work out the case of SU(2|1) in details. Physically these invariants are realized as the index of BPS states of a system of intersecting fivebranes wrapping a 3-manifold in M-theory. As in the original case, the homological blocks are q-series with integer coefficients. We provide an explicit algorithm to calculate these q-series for a class of plumbed 3-manifolds and study quantum modularity and resurgence properties for some particular 3-manifolds. Finally, we conjecture a formula relating the $hat{Z}$ invariants and the quantum invariants constructed from a non-semisimple category of representation of the unrolled version of a quantum supergroup.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا