Do you want to publish a course? Click here

Exact SUSY Wilson loops on $S^3$ from $q$-Virasoro constraints

223   0   0.0 ( 0 )
 Added by Luca Cassia
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the ideas from the BPS/CFT correspondence, we give an explicit recursive formula for computing supersymmetric Wilson loop averages in 3d $mathcal{N}=2$ Yang-Mills-Chern-Simons $U(N)$ theory on the squashed sphere $S^3_b$ with one adjoint chiral and two antichiral fundamental multiplets, for specific values of Chern-Simons level $kappa_2$ and Fayet-Illiopoulos parameter $kappa_1$. For these values of $kappa_1$ and $kappa_2$ the north and south pole turn out to be completely independent, and therefore Wilson loop averages factorize into answers for the two constituent $D^2 times S^1$ theories. In particular, our formula provides results for the theory on the round sphere when the squashing is removed.



rate research

Read More

We show how q-Virasoro constraints can be derived for a large class of (q,t)-deformed eigenvalue matrix models by an elementary trick of inserting certain q-difference operators under the integral, in complete analogy with full-derivative insertions for beta-ensembles. From free-field point of view the models considered have zero momentum of the highest weight, which leads to an extra constraint T_{-1} Z = 0. We then show how to solve these q-Virasoro constraints recursively and comment on the possible applications for gauge theories, for instance calculation of (supersymmetric) Wilson loop averages in gauge theories on D^2 cross S^1 and S^3.
The Virasoro constraints play the important role in the study of matrix models and in understanding of the relation between matrix models and CFTs. Recently the localization calculations in supersymmetric gauge theories produced new families of matrix models and we have very limited knowledge about these matrix models. We concentrate on elliptic generalization of hermitian matrix model which corresponds to calculation of partition function on $S^3 times S^1$ for vector multiplet. We derive the $q$-Virasoro constraints for this matrix model. We also observe some interesting algebraic properties of the $q$-Virasoro algebra.
We revisit the Virasoro constraints and explore the relation to the Hirota bilinear equations. We furthermore investigate and provide the solution to non-homogeneous Virasoro constraints, namely those coming from matrix models whose domain of integration has boundaries. In particular, we provide the example of Hermitean matrices with positive eigenvalues in which case one can find a solution by induction on the rank of the matrix model.
94 - H. Dorn , H.-J. Otto 1998
We give a short introduction to and a partial review of the work on the calculation of Wilson loops and $Qbar Q$-potentials via the conjectured AdS/CFT duality. Included is a discussion of the relative weight of the stringy correction to the target space background versus the correction by the quantum fluctuations of the string world sheet.
There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equivalence was first suggested at strong coupling using the AdS/CFT correspondence and has since been verified at weak coupling to one loop in perturbation theory. Here we perform an explicit two-loop calculation of the Wilson loop dual to the four-gluon scattering amplitude and demonstrate that the relation holds beyond one loop. We also propose an anomalous conformal Ward identity which uniquely fixes the form of the finite part (up to an additive constant) of the Wilson loop dual to four- and five-gluon amplitudes, in complete agreement with the BDS conjecture for the multi-gluon MHV amplitudes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا