Do you want to publish a course? Click here

An Enhanced Convolutional Neural Network in Side-Channel Attacks and Its Visualization

138   0   0.0 ( 0 )
 Added by Mengce Zheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In recent years, the convolutional neural networks (CNNs) have received a lot of interest in the side-channel community. The previous work has shown that CNNs have the potential of breaking the cryptographic algorithm protected with masking or desynchronization. Before, several CNN models have been exploited, reaching the same or even better level of performance compared to the traditional side-channel attack (SCA). In this paper, we investigate the architecture of Residual Network and build a new CNN model called attention network. To enhance the power of the attention network, we introduce an attention mechanism - Convolutional Block Attention Module (CBAM) and incorporate CBAM into the CNN architecture. CBAM points out the informative points of the input traces and makes the attention network focus on the relevant leakages of the measurements. It is able to improve the performance of the CNNs. Because the irrelevant points will introduce the extra noises and cause a worse performance of attacks. We compare our attention network with the one designed for the masking AES implementation called ASCAD network in this paper. We show that the attention network has a better performance than the ASCAD network. Finally, a new visualization method, named Class Gradient Visualization (CGV) is proposed to recognize which points of the input traces have a positive influence on the predicted result of the neural networks. In another aspect, it can explain why the attention network is superior to the ASCAD network. We validate the attention network through extensive experiments on four public datasets and demonstrate that the attention network is efficient in different AES implementations.



rate research

Read More

The interplay between security and reliability is poorly understood. This paper shows how triple modular redundancy affects a side-channel attack (SCA). Our counterintuitive findings show that modular redundancy can increase SCA resiliency.
Recent work has introduced attacks that extract the architecture information of deep neural networks (DNN), as this knowledge enhances an adversarys capability to conduct black-box attacks against the model. This paper presents the first in-depth security analysis of DNN fingerprinting attacks that exploit cache side-channels. First, we define the threat model for these attacks: our adversary does not need the ability to query the victim model; instead, she runs a co-located process on the host machine victims deep learning (DL) system is running and passively monitors the accesses of the target functions in the shared framework. Second, we introduce DeepRecon, an attack that reconstructs the architecture of the victim network by using the internal information extracted via Flush+Reload, a cache side-channel technique. Once the attacker observes function invocations that map directly to architecture attributes of the victim network, the attacker can reconstruct the victims entire network architecture. In our evaluation, we demonstrate that an attacker can accurately reconstruct two complex networks (VGG19 and ResNet50) having observed only one forward propagation. Based on the extracted architecture attributes, we also demonstrate that an attacker can build a meta-model that accurately fingerprints the architecture and family of the pre-trained model in a transfer learning setting. From this meta-model, we evaluate the importance of the observed attributes in the fingerprinting process. Third, we propose and evaluate new framework-level defense techniques that obfuscate our attackers observations. Our empirical security analysis represents a step toward understanding the DNNs vulnerability to cache side-channel attacks.
In recent years, various deep learning techniques have been exploited in side channel attacks, with the anticipation of obtaining more appreciable attack results. Most of them concentrate on improving network architectures or putting forward novel algorithms, assuming that there are adequate profiling traces available to train an appropriate neural network. However, in practical scenarios, profiling traces are probably insufficient, which makes the network learn deficiently and compromises attack performance. In this paper, we investigate a kind of data augmentation technique, called mixup, and first propose to exploit it in deep-learning based side channel attacks, for the purpose of expanding the profiling set and facilitating the chances of mounting a successful attack. We perform Correlation Power Analysis for generated traces and original traces, and discover that there exists consistency between them regarding leakage information. Our experiments show that mixup is truly capable of enhancing attack performance especially for insufficient profiling traces. Specifically, when the size of the training set is decreased to 30% of the original set, mixup can significantly reduce acquired attacking traces. We test three mixup parameter values and conclude that generally all of them can bring about improvements. Besides, we compare three leakage models and unexpectedly find that least significant bit model, which is less frequently used in previous works, actually surpasses prevalent identity model and hamming weight model in terms of attack results.
Numerous previous works have studied deep learning algorithms applied in the context of side-channel attacks, which demonstrated the ability to perform successful key recoveries. These studies show that modern cryptographic devices are increasingly threatened by side-channel attacks with the help of deep learning. However, the existing countermeasures are designed to resist classical side-channel attacks, and cannot protect cryptographic devices from deep learning based side-channel attacks. Thus, there arises a strong need for countermeasures against deep learning based side-channel attacks. Although deep learning has the high potential in solving complex problems, it is vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrectly. In this paper, we propose a kind of novel countermeasures based on adversarial attacks that is specifically designed against deep learning based side-channel attacks. We estimate several models commonly used in deep learning based side-channel attacks to evaluate the proposed countermeasures. It shows that our approach can effectively protect cryptographic devices from deep learning based side-channel attacks in practice. In addition, our experiments show that the new countermeasures can also resist classical side-channel attacks.
Gaining insight into how deep convolutional neural network models perform image classification and how to explain their outputs have been a concern to computer vision researchers and decision makers. These deep models are often referred to as black box due to low comprehension of their internal workings. As an effort to developing explainable deep learning models, several methods have been proposed such as finding gradients of class output with respect to input image (sensitivity maps), class activation map (CAM), and Gradient based Class Activation Maps (Grad-CAM). These methods under perform when localizing multiple occurrences of the same class and do not work for all CNNs. In addition, Grad-CAM does not capture the entire object in completeness when used on single object images, this affect performance on recognition tasks. With the intention to create an enhanced visual explanation in terms of visual sharpness, object localization and explaining multiple occurrences of objects in a single image, we present Smooth Grad-CAM++ footnote{Simple demo: http://35.238.22.135:5000/}, a technique that combines methods from two other recent techniques---SMOOTHGRAD and Grad-CAM++. Our Smooth Grad-CAM++ technique provides the capability of either visualizing a layer, subset of feature maps, or subset of neurons within a feature map at each instance at the inference level (model prediction process). After experimenting with few images, Smooth Grad-CAM++ produced more visually sharp maps with better localization of objects in the given input images when compared with other methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا