No Arabic abstract
Gaining insight into how deep convolutional neural network models perform image classification and how to explain their outputs have been a concern to computer vision researchers and decision makers. These deep models are often referred to as black box due to low comprehension of their internal workings. As an effort to developing explainable deep learning models, several methods have been proposed such as finding gradients of class output with respect to input image (sensitivity maps), class activation map (CAM), and Gradient based Class Activation Maps (Grad-CAM). These methods under perform when localizing multiple occurrences of the same class and do not work for all CNNs. In addition, Grad-CAM does not capture the entire object in completeness when used on single object images, this affect performance on recognition tasks. With the intention to create an enhanced visual explanation in terms of visual sharpness, object localization and explaining multiple occurrences of objects in a single image, we present Smooth Grad-CAM++ footnote{Simple demo: http://35.238.22.135:5000/}, a technique that combines methods from two other recent techniques---SMOOTHGRAD and Grad-CAM++. Our Smooth Grad-CAM++ technique provides the capability of either visualizing a layer, subset of feature maps, or subset of neurons within a feature map at each instance at the inference level (model prediction process). After experimenting with few images, Smooth Grad-CAM++ produced more visually sharp maps with better localization of objects in the given input images when compared with other methods.
To have a better understanding and usage of Convolution Neural Networks (CNNs), the visualization and interpretation of CNNs has attracted increasing attention in recent years. In particular, several Class Activation Mapping (CAM) methods have been proposed to discover the connection between CNNs decision and image regions. In spite of the reasonable visualization, lack of clear and sufficient theoretical support is the main limitation of these methods. In this paper, we introduce two axioms -- Conservation and Sensitivity -- to the visualization paradigm of the CAM methods. Meanwhile, a dedicated Axiom-based Grad-CAM (XGrad-CAM) is proposed to satisfy these axioms as much as possible. Experiments demonstrate that XGrad-CAM is an enhanced version of Grad-CAM in terms of conservation and sensitivity. It is able to achieve better visualization performance than Grad-CAM, while also be class-discriminative and easy-to-implement compared with Grad-CAM++ and Ablation-CAM. The code is available at https://github.com/Fu0511/XGrad-CAM.
In recent years, the convolutional neural networks (CNNs) have received a lot of interest in the side-channel community. The previous work has shown that CNNs have the potential of breaking the cryptographic algorithm protected with masking or desynchronization. Before, several CNN models have been exploited, reaching the same or even better level of performance compared to the traditional side-channel attack (SCA). In this paper, we investigate the architecture of Residual Network and build a new CNN model called attention network. To enhance the power of the attention network, we introduce an attention mechanism - Convolutional Block Attention Module (CBAM) and incorporate CBAM into the CNN architecture. CBAM points out the informative points of the input traces and makes the attention network focus on the relevant leakages of the measurements. It is able to improve the performance of the CNNs. Because the irrelevant points will introduce the extra noises and cause a worse performance of attacks. We compare our attention network with the one designed for the masking AES implementation called ASCAD network in this paper. We show that the attention network has a better performance than the ASCAD network. Finally, a new visualization method, named Class Gradient Visualization (CGV) is proposed to recognize which points of the input traces have a positive influence on the predicted result of the neural networks. In another aspect, it can explain why the attention network is superior to the ASCAD network. We validate the attention network through extensive experiments on four public datasets and demonstrate that the attention network is efficient in different AES implementations.
Visualizing the features captured by Convolutional Neural Networks (CNNs) is one of the conventional approaches to interpret the predictions made by these models in numerous image recognition applications. Grad-CAM is a popular solution that provides such a visualization by combining the activation maps obtained from the model. However, the average gradient-based terms deployed in this method underestimates the contribution of the representations discovered by the model to its predictions. Addressing this problem, we introduce a solution to tackle this issue by computing the path integral of the gradient-based terms in Grad-CAM. We conduct a thorough analysis to demonstrate the improvement achieved by our method in measuring the importance of the extracted representations for the CNNs predictions, which yields to our methods administration in object localization and model interpretation.
In this work, we present a novel background subtraction system that uses a deep Convolutional Neural Network (CNN) to perform the segmentation. With this approach, feature engineering and parameter tuning become unnecessary since the network parameters can be learned from data by training a single CNN that can handle various video scenes. Additionally, we propose a new approach to estimate background model from video. For the training of the CNN, we employed randomly 5 percent video frames and their ground truth segmentations taken from the Change Detection challenge 2014(CDnet 2014). We also utilized spatial-median filtering as the post-processing of the network outputs. Our method is evaluated with different data-sets, and the network outperforms the existing algorithms with respect to the average ranking over different evaluation metrics. Furthermore, due to the network architecture, our CNN is capable of real time processing.
We propose a technique for producing visual explanations for decisions from a large class of CNN-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept, flowing into the final convolutional layer to produce a coarse localization map highlighting important regions in the image for predicting the concept. Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers, (2) CNNs used for structured outputs, (3) CNNs used in tasks with multimodal inputs or reinforcement learning, without any architectural changes or re-training. We combine Grad-CAM with fine-grained visualizations to create a high-resolution class-discriminative visualization and apply it to off-the-shelf image classification, captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into their failure modes, (b) are robust to adversarial images, (c) outperform previous methods on localization, (d) are more faithful to the underlying model and (e) help achieve generalization by identifying dataset bias. For captioning and VQA, we show that even non-attention based models can localize inputs. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM helps users establish appropriate trust in predictions from models and show that Grad-CAM helps untrained users successfully discern a stronger nodel from a weaker one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/, along with a demo at http://gradcam.cloudcv.org, and a video at youtu.be/COjUB9Izk6E.