Do you want to publish a course? Click here

Adversarial Attack Based Countermeasures against Deep Learning Side-Channel Attacks

316   0   0.0 ( 0 )
 Added by Mengce Zheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Numerous previous works have studied deep learning algorithms applied in the context of side-channel attacks, which demonstrated the ability to perform successful key recoveries. These studies show that modern cryptographic devices are increasingly threatened by side-channel attacks with the help of deep learning. However, the existing countermeasures are designed to resist classical side-channel attacks, and cannot protect cryptographic devices from deep learning based side-channel attacks. Thus, there arises a strong need for countermeasures against deep learning based side-channel attacks. Although deep learning has the high potential in solving complex problems, it is vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrectly. In this paper, we propose a kind of novel countermeasures based on adversarial attacks that is specifically designed against deep learning based side-channel attacks. We estimate several models commonly used in deep learning based side-channel attacks to evaluate the proposed countermeasures. It shows that our approach can effectively protect cryptographic devices from deep learning based side-channel attacks in practice. In addition, our experiments show that the new countermeasures can also resist classical side-channel attacks.



rate research

Read More

Intel has introduced a trusted computing technology, Intel Software Guard Extension (SGX), which provides an isolated and secure execution environment called enclave for a user program without trusting any privilege software (e.g., an operating system or a hypervisor) or firmware. Nevertheless, SGX is vulnerable to several side channel attacks (e.g. page-fault-based attack and cache-based attack). In this paper, we explore a new, yet critical side channel attack in SGX, interface-based side channel attack, which can infer the information of the enclave input data. The root cause of the interface-based side channel attack is the input dependent interface invocation information (e.g., interface information and invocation patterns) which can be observed by the untrusted privilege software can reveal the control flow in the enclave. We study the methodology which can be used to conduct the interface-based side channel attack. To illustrate the effectiveness of the interface-based side-channel attacks, we use our methodology to infer whether tracked web pages have been processed by the SGX-assisted NFV platforms and achieve the accuracy of 87.6% and recall of 76.6%. We also identify the packets which belong to the tracked web pages, with the accuracy of 67.9%and recall of 71.1%. We finally propose some countermeasures to defense the interface-based side channel attack in SGX-assisted applications.
In recent years, various deep learning techniques have been exploited in side channel attacks, with the anticipation of obtaining more appreciable attack results. Most of them concentrate on improving network architectures or putting forward novel algorithms, assuming that there are adequate profiling traces available to train an appropriate neural network. However, in practical scenarios, profiling traces are probably insufficient, which makes the network learn deficiently and compromises attack performance. In this paper, we investigate a kind of data augmentation technique, called mixup, and first propose to exploit it in deep-learning based side channel attacks, for the purpose of expanding the profiling set and facilitating the chances of mounting a successful attack. We perform Correlation Power Analysis for generated traces and original traces, and discover that there exists consistency between them regarding leakage information. Our experiments show that mixup is truly capable of enhancing attack performance especially for insufficient profiling traces. Specifically, when the size of the training set is decreased to 30% of the original set, mixup can significantly reduce acquired attacking traces. We test three mixup parameter values and conclude that generally all of them can bring about improvements. Besides, we compare three leakage models and unexpectedly find that least significant bit model, which is less frequently used in previous works, actually surpasses prevalent identity model and hamming weight model in terms of attack results.
This paper presents channel-aware adversarial attacks against deep learning-based wireless signal classifiers. There is a transmitter that transmits signals with different modulation types. A deep neural network is used at each receiver to classify its over-the-air received signals to modulation types. In the meantime, an adversary transmits an adversarial perturbation (subject to a power budget) to fool receivers into making errors in classifying signals that are received as superpositions of transmitted signals and adversarial perturbations. First, these evasion attacks are shown to fail when channels are not considered in designing adversarial perturbations. Then, realistic attacks are presented by considering channel effects from the adversary to each receiver. After showing that a channel-aware attack is selective (i.e., it affects only the receiver whose channel is considered in the perturbation design), a broadcast adversarial attack is presented by crafting a common adversarial perturbation to simultaneously fool classifiers at different receivers. The major vulnerability of modulation classifiers to over-the-air adversarial attacks is shown by accounting for different levels of information available about the channel, the transmitter input, and the classifier model. Finally, a certified defense based on randomized smoothing that augments training data with noise is introduced to make the modulation classifier robust to adversarial perturbations.
GPUs are increasingly being used in security applications, especially for accelerating encryption/decryption. While GPUs are an attractive platform in terms of performance, the security of these devices raises a number of concerns. One vulnerability is the data-dependent timing information, which can be exploited by adversary to recover the encryption key. Memory system features are frequently exploited since they create detectable timing variations. In this paper, our attack model is a coalescing attack, which leverages a critical GPU microarchitectural feature -- the coalescing unit. As multiple concurrent GPU memory requests can refer to the same cache block, the coalescing unit collapses them into a single memory transaction. The access time of an encryption kernel is dependent on the number of transactions. Correlation between a guessed key value and the associated timing samples can be exploited to recover the secret key. In this paper, a series of hardware/software countermeasures are proposed to obfuscate the memory timing side channel, making the GPU more resilient without impacting performance. Our hardware-based approach attempts to randomize the width of the coalescing unit to lower the signal-to-noise ratio. We present a hierarchical Miss Status Holding Register (MSHR) design that can merge transactions across different warps. This feature boosts performance, while, at the same time, secures the execution. We also present a software-based approach to permute the organization of critical data structures, significantly changing the coalescing behavior and introducing a high degree of randomness. Equipped with our new protections, the effort to launch a successful attack is increased up to 1433X . 178X, while also improving encryption/decryption performance up to 7%.
166 - Bowei Xi , Yujie Chen , Fan Fei 2021
The paper develops a new adversarial attack against deep neural networks (DNN), based on applying bio-inspired design to moving physical objects. To the best of our knowledge, this is the first work to introduce physical attacks with a moving object. Instead of following the dominating attack strategy in the existing literature, i.e., to introduce minor perturbations to a digital input or a stationary physical object, we show two new successful attack strategies in this paper. We show by superimposing several patterns onto one physical object, a DNN becomes confused and picks one of the patterns to assign a class label. Our experiment with three flapping wing robots demonstrates the possibility of developing an adversarial camouflage to cause a targeted mistake by DNN. We also show certain motion can reduce the dependency among consecutive frames in a video and make an object detector blind, i.e., not able to detect an object exists in the video. Hence in a successful physical attack against DNN, targeted motion against the system should also be considered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا