Do you want to publish a course? Click here

Consistent detection and optimal localization of all detectable change points in piecewise stationary arbitrarily sparse network-sequences

141   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider the offline change point detection and localization problem in the context of piecewise stationary networks, where the observable is a finite sequence of networks. We develop algorithms involving some suitably modified CUSUM statistics based on adaptively trimmed adjacency matrices of the observed networks for both detection and localization of single or multiple change points present in the input data. We provide rigorous theoretical analysis and finite sample estimates evaluating the performance of the proposed methods when the input (finite sequence of networks) is generated from an inhomogeneous random graph model, where the change points are characterized by the change in the mean adjacency matrix. We show that the proposed algorithms can detect (resp. localize) all change points, where the change in the expected adjacency matrix is above the minimax detectability (resp. localizability) threshold, consistently without any a priori assumption about (a) a lower bound for the sparsity of the underlying networks, (b) an upper bound for the number of change points, and (c) a lower bound for the separation between successive change points, provided either the minimum separation between successive pairs of change points or the average degree of the underlying networks goes to infinity arbitrarily slowly. We also prove that the above condition is necessary to have consistency.



rate research

Read More

We introduce GLR-klUCB, a novel algorithm for the piecewise iid non-stationary bandit problem with bounded rewards. This algorithm combines an efficient bandit algorithm, kl-UCB, with an efficient, parameter-free, changepoint detector, the Bernoulli Generalized Likelihood Ratio Test, for which we provide new theoretical guarantees of independent interest. Unlike previous non-stationary bandit algorithms using a change-point detector, GLR-klUCB does not need to be calibrated based on prior knowledge on the arms means. We prove that this algorithm can attain a $O(sqrt{TA Upsilon_Tlog(T)})$ regret in $T$ rounds on some easy instances, where A is the number of arms and $Upsilon_T$ the number of change-points, without prior knowledge of $Upsilon_T$. In contrast with recently proposed algorithms that are agnostic to $Upsilon_T$, we perform a numerical study showing that GLR-klUCB is also very efficient in practice, beyond easy instances.
Cascades represent rapid changes in networks. A cascading phenomenon of ecological and economic impact is the spread of invasive species in geographic landscapes. The most promising management strategy is often biocontrol, which entails introducing a natural predator able to control the invading population, a setting that can be treated as two interacting cascades of predator and prey populations. We formulate and study a nonlinear problem of optimal biocontrol: optimally seeding the predator cascade over time to minimize the harmful prey population. Recurring budgets, which typically face conservation organizations, naturally leads to sparse constraints which make the problem amenable to approximation algorithms. Available methods based on continuous relaxations scale poorly, to remedy this we develop a novel and scalable randomized algorithm based on a width relaxation, applicable to a broad class of combinatorial optimization problems. We evaluate our contributions in the context of biocontrol for the insect pest Hemlock Wolly Adelgid (HWA) in eastern North America. Our algorithm outperforms competing methods in terms of scalability and solution quality, and finds near optimal strategies for the control of the HWA for fine-grained networks -- an important problem in computational sustainability.
Dynamic networks exhibit temporal patterns that vary across different time scales, all of which can potentially affect processes that take place on the network. However, most data-driven approaches used to model time-varying networks attempt to capture only a single characteristic time scale in isolation --- typically associated with the short-time memory of a Markov chain or with long-time abrupt changes caused by external or systemic events. Here we propose a unified approach to model both aspects simultaneously, detecting short and long-time behaviors of temporal networks. We do so by developing an arbitrary-order mixed Markov model with change points, and using a nonparametric Bayesian formulation that allows the Markov order and the position of change points to be determined from data without overfitting. In addition, we evaluate the quality of the multiscale model in its capacity to reproduce the spreading of epidemics on the temporal network, and we show that describing multiple time scales simultaneously has a synergistic effect, where statistically significant features are uncovered that otherwise would remain hidden by treating each time scale independently.
Cascading bandit (CB) is a popular model for web search and online advertising, where an agent aims to learn the $K$ most attractive items out of a ground set of size $L$ during the interaction with a user. However, the stationary CB model may be too simple to apply to real-world problems, where user preferences may change over time. Considering piecewise-stationary environments, two efficient algorithms, texttt{GLRT-CascadeUCB} and texttt{GLRT-CascadeKL-UCB}, are developed and shown to ensure regret upper bounds on the order of $mathcal{O}(sqrt{NLTlog{T}})$, where $N$ is the number of piecewise-stationary segments, and $T$ is the number of time slots. At the crux of the proposed algorithms is an almost parameter-free change-point detector, the generalized likelihood ratio test (GLRT). Comparing with existing works, the GLRT-based algorithms: i) are free of change-point-dependent information for choosing parameters; ii) have fewer tuning parameters; iii) improve at least the $L$ dependence in regret upper bounds. In addition, we show that the proposed algorithms are optimal (up to a logarithm factor) in terms of regret by deriving a minimax lower bound on the order of $Omega(sqrt{NLT})$ for piecewise-stationary CB. The efficiency of the proposed algorithms relative to state-of-the-art approaches is validated through numerical experiments on both synthetic and real-world datasets.
Let ${(X_i,Y_i)}$ be a stationary ergodic time series with $(X,Y)$ values in the product space $R^dbigotimes R .$ This study offers what is believed to be the first strongly consistent (with respect to pointwise, least-squares, and uniform distance) algorithm for inferring $m(x)=E[Y_0|X_0=x]$ under the presumption that $m(x)$ is uniformly Lipschitz continuous. Auto-regression, or forecasting, is an important special case, and as such our work extends the literature of nonparametric, nonlinear forecasting by circumventing customary mixing assumptions. The work is motivated by a time series model in stochastic finance and by perspectives of its contribution to the issues of universal time series estimation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا