Do you want to publish a course? Click here

Strongly consistent nonparametric forecasting and regression for stationary ergodic sequences

267   0   0.0 ( 0 )
 Added by Gusztav Morvai
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

Let ${(X_i,Y_i)}$ be a stationary ergodic time series with $(X,Y)$ values in the product space $R^dbigotimes R .$ This study offers what is believed to be the first strongly consistent (with respect to pointwise, least-squares, and uniform distance) algorithm for inferring $m(x)=E[Y_0|X_0=x]$ under the presumption that $m(x)$ is uniformly Lipschitz continuous. Auto-regression, or forecasting, is an important special case, and as such our work extends the literature of nonparametric, nonlinear forecasting by circumventing customary mixing assumptions. The work is motivated by a time series model in stochastic finance and by perspectives of its contribution to the issues of universal time series estimation.



rate research

Read More

345 - G. Morvai , S. Yakowitz , 2007
The setting is a stationary, ergodic time series. The challenge is to construct a sequence of functions, each based on only finite segments of the past, which together provide a strongly consistent estimator for the conditional probability of the next observation, given the infinite past. Ornstein gave such a construction for the case that the values are from a finite set, and recently Algoet extended the scheme to time series with coordinates in a Polish space. The present study relates a different solution to the challenge. The algorithm is simple and its verification is fairly transparent. Some extensions to regression, pattern recognition, and on-line forecasting are mentioned.
152 - L. Gyorfi , G. Morvai , 2007
This study concerns problems of time-series forecasting under the weakest of assumptions. Related results are surveyed and are points of departure for the developments here, some of which are new and others are new derivations of previous findings. The contributions in this study are all negative, showing that various plausible prediction problems are unsolvable, or in other cases, are not solvable by predictors which are known to be consistent when mixing conditions hold.
The forecasting problem for a stationary and ergodic binary time series ${X_n}_{n=0}^{infty}$ is to estimate the probability that $X_{n+1}=1$ based on the observations $X_i$, $0le ile n$ without prior knowledge of the distribution of the process ${X_n}$. It is known that this is not possible if one estimates at all values of $n$. We present a simple procedure which will attempt to make such a prediction infinitely often at carefully selected stopping times chosen by the algorithm. We show that the proposed procedure is consistent under certain conditions, and we estimate the growth rate of the stopping times.
The conditional distribution of the next outcome given the infinite past of a stationary process can be inferred from finite but growing segments of the past. Several schemes are known for constructing pointwise consistent estimates, but they all demand prohibitive amounts of input data. In this paper we consider real-valued time series and construct conditional distribution estimates that make much more efficient use of the input data. The estimates are consistent in a weak sense, and the question whether they are pointwise consistent is still open. For finite-alphabet processes one may rely on a universal data compression scheme like the Lempel-Ziv algorithm to construct conditional probability mass function estimates that are consistent in expected information divergence. Consistency in this strong sense cannot be attained in a universal sense for all stationary processes with values in an infinite alphabet, but weak consistency can. Some applications of the estimates to on-line forecasting, regression and classification are discussed.
265 - L. Gyorfi , G. Morvai 2007
In this paper we revisit the results of Loynes (1962) on stability of queues for ergodic arrivals and services, and show examples when the arrivals are bounded and ergodic, the service rate is constant, and under stability the limit distribution has larger than exponential tail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا