Do you want to publish a course? Click here

Nearly Optimal Algorithms for Piecewise-Stationary Cascading Bandits

169   0   0.0 ( 0 )
 Added by Lingda Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Cascading bandit (CB) is a popular model for web search and online advertising, where an agent aims to learn the $K$ most attractive items out of a ground set of size $L$ during the interaction with a user. However, the stationary CB model may be too simple to apply to real-world problems, where user preferences may change over time. Considering piecewise-stationary environments, two efficient algorithms, texttt{GLRT-CascadeUCB} and texttt{GLRT-CascadeKL-UCB}, are developed and shown to ensure regret upper bounds on the order of $mathcal{O}(sqrt{NLTlog{T}})$, where $N$ is the number of piecewise-stationary segments, and $T$ is the number of time slots. At the crux of the proposed algorithms is an almost parameter-free change-point detector, the generalized likelihood ratio test (GLRT). Comparing with existing works, the GLRT-based algorithms: i) are free of change-point-dependent information for choosing parameters; ii) have fewer tuning parameters; iii) improve at least the $L$ dependence in regret upper bounds. In addition, we show that the proposed algorithms are optimal (up to a logarithm factor) in terms of regret by deriving a minimax lower bound on the order of $Omega(sqrt{NLT})$ for piecewise-stationary CB. The efficiency of the proposed algorithms relative to state-of-the-art approaches is validated through numerical experiments on both synthetic and real-world datasets.



rate research

Read More

We study the multi-armed bandit problem where the rewards are realizations of general non-stationary stochastic processes, a setting that generalizes many existing lines of work and analyses. In particular, we present a theoretical analysis and derive regret guarantees for rested bandits in which the reward distribution of each arm changes only when we pull that arm. Remarkably, our regret bounds are logarithmic in the number of rounds under several natural conditions. We introduce a new algorithm based on classical UCB ideas combined with the notion of weighted discrepancy, a useful tool for measuring the non-stationarity of a stochastic process. We show that the notion of discrepancy can be used to design very general algorithms and a unified framework for the analysis of multi-armed rested bandit problems with non-stationary rewards. In particular, we show that we can recover the regret guarantees of many specific instances of bandit problems with non-stationary rewards that have been studied in the literature. We also provide experiments demonstrating that our algorithms can enjoy a significant improvement in practice compared to standard benchmarks.
78 - Lihong Li , Yu Lu , Dengyong Zhou 2017
Contextual bandits are widely used in Internet services from news recommendation to advertising, and to Web search. Generalized linear models (logistical regression in particular) have demonstrated stronger performance than linear models in many applications where rewards are binary. However, most theoretical analyses on contextual bandits so far are on linear bandits. In this work, we propose an upper confidence bound based algorithm for generalized linear contextual bandits, which achieves an $tilde{O}(sqrt{dT})$ regret over $T$ rounds with $d$ dimensional feature vectors. This regret matches the minimax lower bound, up to logarithmic terms, and improves on the best previous result by a $sqrt{d}$ factor, assuming the number of arms is fixed. A key component in our analysis is to establish a new, sharp finite-sample confidence bound for maximum-likelihood estimates in generalized linear models, which may be of independent interest. We also analyze a simpler upper confidence bound algorithm, which is useful in practice, and prove it to have optimal regret for certain cases.
140 - Ruida Zhou , Chao Gan , Jing Yan 2018
In this paper, we propose a cost-aware cascading bandits model, a new variant of multi-armed ban- dits with cascading feedback, by considering the random cost of pulling arms. In each step, the learning agent chooses an ordered list of items and examines them sequentially, until certain stopping condition is satisfied. Our objective is then to max- imize the expected net reward in each step, i.e., the reward obtained in each step minus the total cost in- curred in examining the items, by deciding the or- dered list of items, as well as when to stop examina- tion. We study both the offline and online settings, depending on whether the state and cost statistics of the items are known beforehand. For the of- fline setting, we show that the Unit Cost Ranking with Threshold 1 (UCR-T1) policy is optimal. For the online setting, we propose a Cost-aware Cas- cading Upper Confidence Bound (CC-UCB) algo- rithm, and show that the cumulative regret scales in O(log T ). We also provide a lower bound for all {alpha}-consistent policies, which scales in {Omega}(log T ) and matches our upper bound. The performance of the CC-UCB algorithm is evaluated with both synthetic and real-world data.
We study the combinatorial pure exploration problem Best-Set in stochastic multi-armed bandits. In a Best-Set instance, we are given $n$ arms with unknown reward distributions, as well as a family $mathcal{F}$ of feasible subsets over the arms. Our goal is to identify the feasible subset in $mathcal{F}$ with the maximum total mean using as few samples as possible. The problem generalizes the classical best arm identification problem and the top-$k$ arm identification problem, both of which have attracted significant attention in recent years. We provide a novel instance-wise lower bound for the sample complexity of the problem, as well as a nontrivial sampling algorithm, matching the lower bound up to a factor of $ln|mathcal{F}|$. For an important class of combinatorial families, we also provide polynomial time implementation of the sampling algorithm, using the equivalence of separation and optimization for convex program, and approximate Pareto curves in multi-objective optimization. We also show that the $ln|mathcal{F}|$ factor is inevitable in general through a nontrivial lower bound construction. Our results significantly improve several previous results for several important combinatorial constraints, and provide a tighter understanding of the general Best-Set problem. We further introduce an even more general problem, formulated in geometric terms. We are given $n$ Gaussian arms with unknown means and unit variance. Consider the $n$-dimensional Euclidean space $mathbb{R}^n$, and a collection $mathcal{O}$ of disjoint subsets. Our goal is to determine the subset in $mathcal{O}$ that contains the $n$-dimensional vector of the means. The problem generalizes most pure exploration bandit problems studied in the literature. We provide the first nearly optimal sample complexity upper and lower bounds for the problem.
Out of the rich family of generalized linear bandits, perhaps the most well studied ones are logisitc bandits that are used in problems with binary rewards: for instance, when the learner/agent tries to maximize the profit over a user that can select one of two possible outcomes (e.g., `click vs `no-click). Despite remarkable recent progress and improved algorithms for logistic bandits, existing works do not address practical situations where the number of outcomes that can be selected by the user is larger than two (e.g., `click, `show me later, `never show again, `no click). In this paper, we study such an extension. We use multinomial logit (MNL) to model the probability of each one of $K+1geq 2$ possible outcomes (+1 stands for the `not click outcome): we assume that for a learners action $mathbf{x}_t$, the user selects one of $K+1geq 2$ outcomes, say outcome $i$, with a multinomial logit (MNL) probabilistic model with corresponding unknown parameter $bar{boldsymboltheta}_{ast i}$. Each outcome $i$ is also associated with a revenue parameter $rho_i$ and the goal is to maximize the expected revenue. For this problem, we present MNL-UCB, an upper confidence bound (UCB)-based algorithm, that achieves regret $tilde{mathcal{O}}(dKsqrt{T})$ with small dependency on problem-dependent constants that can otherwise be arbitrarily large and lead to loose regret bounds. We present numerical simulations that corroborate our theoretical results.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا