No Arabic abstract
We study the polarization and dispersion properties of gluons moving within a weakly magnetized background at one-loop order. To this end, we show two alternative derivations of the charged fermion propagator in the weak field expansion and use this expression to compute the lowest order magnetic field correction to the gluon polarization tensor. We explicitly show that, in spite of its cumbersome appearance, the gluon polarization tensor is transverse as required by gauge invariance. We also show that none of the three polarization modes develops a magnetic mass and that gluons propagate along the light cone, non withstanding that Lorentz invariance is lost due to the presence of the magnetic field. By comparing with the expression for the gluon polarization tensor valid to all orders in the magnetic field, the existence of a second solution, corresponding to a finite gluon mass, is shown to be spurious and an artifact of the lowest order approximation in the field strength. We also study the strength of the polarization modes for real gluons. We conclude that, provided the spurious solutions are discarded, the lowest order approximation to the gluon polarization and dispersion properties is good as long as the field strength is small compared to the loop fermion mass.
We present an analytic method to compute the one-loop magnetic correction to the gluon polarization tensor starting from the Landau-level representation of the quark propagator in the presence of an external magnetic field. We show that the general expression contains the vacuum contribution that can be isolated from the zero-field limit for finite gluon momentum. The general tensor structure for the gluon polarization also contains two spurious terms that do not satisfy the transversality properties. However, we also show that the coefficients of this structures vanish and thus do not contribute to the polarization tensor, as expected. In order to check the validity of the expressions we study the strong and weak field limits and show that well established results are reproduced. The findings can be used to study the conditions for gluons to equilibrate with the magnetic field produced during the early stages of a relativistic heavy-ion collision.
We have computed the hard dilepton production rate from a weakly magnetized deconfined QCD medium within one-loop photon self-energy by considering one hard and one thermomagnetic resummed quark propagator in the loop. In the presence of the magnetic field, the resummed propagator leads to four quasiparticle modes. The production of hard dileptons consists of rates when all four quasiquarks originating from the poles of the propagator individually annihilate with a hard quark coming from a bare propagator in the loop. Besides these, there are also contributions from a mixture of pole and Landau cut part. In weak field approximation, the magnetic field appears as a perturbative correction to the thermal contribution. Since the calculation is very involved, for a first effort as well as for simplicity, we obtained the rate up to first order in the magnetic field, i.e., ${cal O}[(eB)]$, which causes a marginal improvement over that in the absence of magnetic field.
We present an extension to next-to-leading order in the strong coupling constant $g$ of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle
We study weakly nonlinear wave perturbations propagating in a cold nonrelativistic and magnetized ideal quark-gluon plasma. We show that such perturbations can be described by the Ostrovsky equation. The derivation of this equation is presented for the baryon density perturbations. Then we show that the generalized nonlinear Schr{o}dinger (NLS) equation can be derived from the Ostrovsky equation for the description of quasi-harmonic wave trains. This equation is modulationally stable for the wave number $k < k_m$ and unstable for $k > k_m$, where $k_m$ is the wave number where the group velocity has a maximum. We study numerically the dynamics of initial wave packets with the different carrier wave numbers and demonstrate that depending on the initial parameters they can evolve either into the NLS envelope solitons or into dispersive wave trains.
We consider weakly magnetized hot QED plasma comprising electrons and positrons. There are three distinct dispersive (longitudinal and two transverse) modes of a photon in a thermo-magnetic medium. At lowest order in coupling constant, photon is damped in this medium via Compton scattering and pair creation process. We evaluate the damping rate of hard photon by calculating the imaginary part of the each transverse dispersive modes in a thermo-magnetic QED medium. We note that one of the fermions in the loop of one-loop photon self-energy is considered as soft and the other one is hard. Considering the resummed fermion propagator in a weakly magnetized medium for the soft fermion and the Schwinger propagator for hard fermion, we calculate the soft contribution to the damping rate of hard photon. In weak field approximation the thermal and thermo-magnetic contributions to damping rate get separated out for each transverse dispersive mode. The total damping rate for each dispersive mode in presence of magnetic field is found to be reduced than that of the thermal one. This formalism can easily be extended to QCD plasma.