No Arabic abstract
We present an extension to next-to-leading order in the strong coupling constant $g$ of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle
We present a computation, within weakly-coupled thermal QCD, of the production rate of low invariant mass ($M^2 sim g^2 T^2$) dileptons, at next-to-leading order (NLO) in the coupling (which is $O(g^3 e^2 T^2)$). This involves extending the NLO calculation of the photon rate which we recently presented to the case of small nonzero photon invariant mass. Numerical results are discussed and tabulated forms and code are provided for inclusion in hydrodynamical models. We find that NLO corrections can increase the dilepton rate by up to 30-40% relative to leading order. We find that the electromagnetic response of the plasma for real photons and for small invariant mass but high energy dilepton pairs (e.g., $M^2 < (300:mathrm{MeV})^2$ but $p_T > 1 : mathrm{GeV}$) are close enough that dilepton pair measurements really can serve as Ersatz photon measurements. We also present a matching a la Ghisoiu and Laine between our results and results at larger invariant masses.
We present an extension of the Arnold-Moore-Yaffe kinetic equations for jet energy loss to NLO in the strong coupling constant. A novel aspect of the NLO analysis is a consistent description of wider-angle bremsstrahlung (semi-collinear emissions), which smoothly interpolates between 2<->2 scattering and collinear bremsstrahlung. We describe how many of the ingredients of the NLO transport equations (such as the drag coefficient) can be expressed in terms of Wilson line operators and can be computed using a Euclidean formalism or sum rules, both motivated by the analytic properties of amplitudes at light-like separations. We conclude with an outlook on the computation of the shear viscosity at NLO.
We calculate the heavy quarkonium energy levels and decay widths in a quark-gluon plasma, whose temperature T and screening mass m_D satisfy the hierarchy m alpha_s >> T >> m alpha_s^2 >> m_D (m being the heavy-quark mass), at order m alpha_s^5. We first sequentially integrate out the scales m, m alpha_s and T, and, next, we carry out the calculations in the resulting effective theory using techniques of integration by regions. A collinear region is identified, which contributes at this order. We also discuss the implications of our results concerning heavy quarkonium suppression in heavy ion collisions.
Wakes created by a parton moving through a static and infinitely extended quark-gluon plasma are considered. In contrast to former investigations collisions within the quark-gluon plasma are taken into account using a transport theoretical approach (Boltzmann equation) with a Bhatnagar-Gross-Krook collision term. Within this model it is shown that the wake structure changes significantly compared to the collisionless case.
Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb--Pb interactions.