Do you want to publish a course? Click here

Soft contribution to the damping rate of a hard photon in a weakly magnetized hot medium

94   0   0.0 ( 0 )
 Added by Ritesh Ghosh
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider weakly magnetized hot QED plasma comprising electrons and positrons. There are three distinct dispersive (longitudinal and two transverse) modes of a photon in a thermo-magnetic medium. At lowest order in coupling constant, photon is damped in this medium via Compton scattering and pair creation process. We evaluate the damping rate of hard photon by calculating the imaginary part of the each transverse dispersive modes in a thermo-magnetic QED medium. We note that one of the fermions in the loop of one-loop photon self-energy is considered as soft and the other one is hard. Considering the resummed fermion propagator in a weakly magnetized medium for the soft fermion and the Schwinger propagator for hard fermion, we calculate the soft contribution to the damping rate of hard photon. In weak field approximation the thermal and thermo-magnetic contributions to damping rate get separated out for each transverse dispersive mode. The total damping rate for each dispersive mode in presence of magnetic field is found to be reduced than that of the thermal one. This formalism can easily be extended to QCD plasma.



rate research

Read More

We consider our recently obtained general structure of two point (self-energy and propagator) functions of quarks and gluons in a nontrivial background like a heat bath and an external magnetic field. Based on this, here we have computed free energy and pressure of quarks and gluons for a magnetized hot and dense deconfined QCD matter in weak field approximation. For heat bath we have used hard thermal loop perturbation theory (HTLpt) in presence of finite chemical potential. For weak field approximations we have obtained the pressure of QCD matter, both with and without the high temperature expansion. The results with high $T$ expansions are completely analytic and gauge independent but depends on the renormalization scale in addition to the temperature, chemical potential and the external magnetic field. We also discuss the modification of QCD Debye mass of such matter for an arbitrary magnetic field. Analytic expressions for Debye mass are also obtained for both strong and weak field approximation. It is found to exhibit some interesting features depending upon the three different scales, i.e, the quark mass, temperature and the strength of the magnetic field. The various divergences appearing in the quark and gluon free energies are regulated through appropriate counter terms. In weak field approximation, the low temperature behavior of the pressure is found to strongly depend on the magnetic field than that at high temperature. We also discuss the specific problem with one-loop HTLpt associated with the over-counting of certain orders in coupling.
We have computed the hard dilepton production rate from a weakly magnetized deconfined QCD medium within one-loop photon self-energy by considering one hard and one thermomagnetic resummed quark propagator in the loop. In the presence of the magnetic field, the resummed propagator leads to four quasiparticle modes. The production of hard dileptons consists of rates when all four quasiquarks originating from the poles of the propagator individually annihilate with a hard quark coming from a bare propagator in the loop. Besides these, there are also contributions from a mixture of pole and Landau cut part. In weak field approximation, the magnetic field appears as a perturbative correction to the thermal contribution. Since the calculation is very involved, for a first effort as well as for simplicity, we obtained the rate up to first order in the magnetic field, i.e., ${cal O}[(eB)]$, which causes a marginal improvement over that in the absence of magnetic field.
In this work, we investigate not only the pole masses but also the screening masses of neutral pions at finite temperature and magnetic field by utilizing the random phase approximation (RPA) approach in the framework of the two-flavor Nambu--Jona-Lasinio (NJL) model. And two equivalent formalisms in the presence of a magnetic field, i.e. the Landau level representation (LLR) and the proper-time representation (PTR), are applied to obtain the corresponding analytical expressions of the polarization functions (except the expressions for the pole masses in the PTR). In order to evaluate the applicable region of the low-momentum expansion (LME), we compare the numerical results within the full RPA (FRPA) with those within the reduced RPA (RRPA), i.e. the RPA in the LME. It is confirmed that the pole masses of {pi}0in the FRPA suffer a sudden mass jump at the Mott transition temperature when in the presence of external magnetic field, and the Mott transition temperature is catalyzed by the magnetic field. And by analyzing the behaviors of the directional sound velocities of {pi}0, which are associated with the breaking of the Lorentz invariance by the heat bath and the magnetic field, we clarify the two problems existing in previous literatures: one is that the transverse sound velocities in the medium are always larger than unity and thus violate the law of causality on account of the non-covariant regularization scheme, the other is that the longitudinal sound velocities are identically equal unity at finite temperature on account of the limitation of the derivative expansion method used.
We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in presence of a nontrivial background like hot magnetised medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analysed the fermion dispersion spectra in a hot magnetised medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left and right handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in presence of magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetised medium corresponding to QED and QCD with background magnetic field.
Within the framework of chiral effective field theory we discuss the leading contributions to the neutrinoless double-beta decay transition operator induced by light Majorana neutrinos. Based on renormalization arguments in both dimensional regularization with minimal subtraction and a coordinate-space cutoff scheme, we show the need to introduce a leading-order short-range operator, missing in all current calculations. We discuss strategies to determine the finite part of the short-range coupling by matching to lattice QCD or by relating it via chiral symmetry to isospin-breaking observables in the two-nucleon sector. Finally, we speculate on the impact of this new contribution on nuclear matrix elements of relevance to experiment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا