Do you want to publish a course? Click here

Multiple AGN activity during the BCG assembly of XDCPJ0044.0-2033 at z~1.6

115   0   0.0 ( 0 )
 Added by Andrea Travascio
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Undisturbed galaxy clusters are characterized by a massive and large elliptical galaxy at their center, i.e. the Brightest Cluster Galaxy (BCG). How these central galaxies form is still debated. According to most models, a typical epoch for their assembly is z~1-2. We have performed a detailed multi-wavelength analysis of the core of XDCPJ0044.0-2033 (XDCP0044), one of the most massive and densest galaxy clusters currently known at redshift z~1.6, whose central galaxy population shows high star formation compared to lower-z clusters and an X-ray AGN located close to its center. SINFONI J-, H- and KMOS YJ-, H- bands spectroscopic data have been analyzed, together with deep archival HST photometric data in F105W, F140W, and F160W bands, Chandra X-ray, radio JVLA data at 1-2 GHz, and ALMA band-6 observations. In the central region of the cluster (~70x70 kpc^2), 2 systems of interacting galaxies have been identified and studied (Complex A and B), with a total of 7 confirmed cluster members. These galaxies show perturbed morphologies and 3 of them show signs of AGN activity. In particular, 2 type-1 AGN with typical broad lines have been found at the center of each complex (both of them X-ray obscured and highly accreting; Eddington ratio ~0.5), while a type-2 AGN has been discovered in Complex A. The AGN at the center of Complex B is also detected in X-ray while the other 2 are spatially related to radio emission. The 3 AGN provide one of the closest AGN triple at z>1 revealed so far with a minimum(maximum) projected distance of ~10(40) kpc. The observation of high star formation, merger signatures and nuclear activity in the core of XDCP0044 suggests that all these processes are key ingredients in shaping the nascent BCG. According to our data, XDCP0044 could form a typical massive galaxy of 10^12 Msun, hosting a Black Hole of 2x10^8-10^9 Msun, in a time scale of the order of ~2.5 Gyrs.



rate research

Read More

We investigate the prevalence of AGN in the high-redshift protocluster $rm{Cl},0218.3$-$0510$ at $z=1.62$. Using imaging from the Chandra X-ray Telescope, we find a large overdensity of AGN in the protocluster; a factor of $23pm9$ times the field density of AGN. Only half of this AGN overdensity is due to the overdensity of massive galaxies in the protocluster (a factor of $11pm2$), as we find that $17^{+6}_{-5}%$ of massive galaxies ($M_* > 10^{10},rm{M}_{odot}$) in the protocluster host an X-ray luminous AGN, compared to $8pm1%$ in the field. This corresponds to an enhancement of AGN activity in massive protocluster galaxies by a factor of $2.1pm0.7$ at $1.6sigma$ significance. We also find that the AGN overdensity is centrally concentrated, located within 3 arcmin and most pronounced within 1 arcmin of the centre of the protocluster. Our results confirm that there is a reversal in the local anti-correlation between galaxy density and AGN activity, so there is an enhancement of AGN in high-redshift protoclusters. We compare the properties of AGN in the protocluster to the field and find no significant differences in the distributions of their stellar mass, X-ray luminosity, or hardness ratio. We therefore suggest that triggering mechanisms are similar in both environments, and that the mechanisms simply occur more frequently in denser environments.
We investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z=1.58, which constitutes the most extreme matter density peak at this redshift currently known. We analyze deep VLT/HAWK-I NIR data in the J- and Ks-bands, complemented by Subaru imaging in i and V, Spitzer observations at 4.5 micron, and new spectroscopic observations with VLT/FORS2. We detect a cluster-associated excess population of about 90 galaxies, which follows a centrally peaked, compact NFW galaxy surface density profile with a concentration of c200~10. Based on the Spitzer 4.5 micron imaging data, we measure a stellar mass fraction of fstar,500=(3.3+-1.4)% consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple z_f=3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass assembly epoch through merging processes. Consequently, the bright end of the cluster red-sequence is not in place, while at intermediate magnitudes [Ks*,Ks*+1.6] a red-locus population is present, which is then sharply truncated at magnitudes fainter than Ks*+1.6. The dominant cluster core population comprises post-quenched galaxies transitioning towards the red-sequence at intermediate magnitudes, while additionally a significant blue cloud population of faint star-forming galaxies is present even in the densest central regions. Our observations lend support to the scenario in which the dominant effect of the dense z~1.6 cluster environment is an accelerated mass assembly timescale through merging activity that is responsible for driving core galaxies across the mass quenching threshold of log(Mstar/Msun)~10.4.
We investigate the effects of dense environments on galaxy evolution by examining how the properties of galaxies in the z = 1.6 protocluster Cl 0218.3-0510 depend on their location. We determine galaxy properties using spectral energy distribution fitting to 14-band photometry, including data at three wavelengths that tightly bracket the Balmer and 4000A breaks of the protocluster galaxies. We find that two-thirds of the protocluster galaxies, which lie between several compact groups, are indistinguishable from field galaxies. The other third, which reside within the groups, differ significantly from the intergroup galaxies in both colour and specific star formation rate. We find that the fraction of red galaxies within the massive protocluster groups is twice that of the intergroup region. These excess red galaxies are due to enhanced fractions of both passive galaxies (1.7 times that of the intergroup region) and dusty star-forming galaxies (3 times that of the intergroup region). We infer that some protocluster galaxies are processed in the groups before the cluster collapses. These processes act to suppress star formation and change the mode of star formation from unobscured to obscured.
We present HST WFC3 F160W imaging and infrared spectral energy distributions for twelve extremely luminous, obscured AGN at $1.8<z<2.7$, selected via Hot, Dust Obscured mid-infrared colors. Their infrared luminosities span $2-15times10^{13}$L$_{odot}$, making them among the most luminous objects in the Universe at $zsim2$. In all cases the infrared emission is consistent with arising at least in most part from AGN activity. The AGN fractional luminosities are higher than those in either sub-millimeter galaxies, or AGN selected via other mid-infrared criteria. Adopting the $G$, M$_{20}$ and $A$ morphological parameters, together with traditional classification boundaries, infers that three quarters of the sample as mergers. Our sample do not, however, show any correlation between the considered morphological parameters and either infrared luminosity or AGN fractional luminosity. Moreover, their asymmetries and effective radii are distributed identically to those of massive galaxies at $zsim2$. We conclude that our sample is not preferentially associated with mergers, though a significant merger fraction is still plausible. Instead, we propose that our sample are examples of the massive galaxy population at $zsim2$ that harbor a briefly luminous, flickering AGN, and in which the $G$ and M$_{20}$ values have been perturbed, due to either the AGN, and/or the earliest formation stages of a bulge in an inside-out manner. Furthermore, we find that the mass assembly of the central black holes in our sample leads the mass assembly of any bulge component. Finally, we speculate that our sample represent a small fraction of the immediate antecedents of compact star-forming galaxies at $zsim2$.
In this paper we present an overview of the MAGNA (Multiple AGN Activity) project aiming at a comprehensive study of multiple supemassive black hole systems. With the main goal to characterize the sources in merging systems at different stages of evolution, we selected a sample of objects optically classified as multiple systems on the basis of emission line diagnostics and started a massive multiband observational campaign. Here we report on the discovery of the exceptionally high AGN density compact group SDSS~J0959+1259. A multiband study suggests that strong interactions are taking place among its galaxies through tidal forces, therefore this system represents a case study for physical mechanisms that trigger nuclear activity and star formation. We also present a preliminary analysis of the multiple AGN system SDSS~J1038+3921.}
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا