Do you want to publish a course? Click here

Unveiling multiple AGN activity in galaxy mergers

257   0   0.0 ( 0 )
 Added by Alessandra De Rosa
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present an overview of the MAGNA (Multiple AGN Activity) project aiming at a comprehensive study of multiple supemassive black hole systems. With the main goal to characterize the sources in merging systems at different stages of evolution, we selected a sample of objects optically classified as multiple systems on the basis of emission line diagnostics and started a massive multiband observational campaign. Here we report on the discovery of the exceptionally high AGN density compact group SDSS~J0959+1259. A multiband study suggests that strong interactions are taking place among its galaxies through tidal forces, therefore this system represents a case study for physical mechanisms that trigger nuclear activity and star formation. We also present a preliminary analysis of the multiple AGN system SDSS~J1038+3921.}



rate research

Read More

In this work, which is a continuation of Castello-Mor et al. (2016), we present new X-ray and infrared (IR) data for a sample of active galactic nuclei (AGN) covering a wide range in Eddington ratio over a small luminosity range. In particular, we rigorously explore the dependence of the optical-to-X-ray spectral index $alpha_{OX}$ and the IR-to-optical spectral index on the dimensionless accretion rate, $dot{mathcal{M}}=dot{m}/eta$ where $dot{m}=L_{AGN}/L_{Edd}$ and $eta$ is the mass-to-radiation conversion efficiency, in low and high accretion rate sources. We find that the SED of the faster accreting sources are surprisingly similar to those from the comparison sample of sources with lower accretion rate. In particular: i) the optical-to-UV AGN SED of slow and fast accreting AGN can be fitted with thin AD models. ii) The value of $alpha_{OX}$ is very similar in slow and fast accreting systems up to a dimensionless accretion rate $dot{mathcal{M}}_{c}sim$10. We only find a correlation between $alpha_{OX}$ and $dot{mathcal{M}}$ for sources with $dot{mathcal{M}} > dot{mathcal{M}}_{c}$. In such cases, the faster accreting sources appear to have systematically larger $alpha_{OX}$ values. iii) We also find that the torus in the faster accreting systems seems to be less efficient in reprocessing the primary AGN radiation having lower IR-to-optical spectral slopes. These findings, failing to recover the predicted differences between the SEDs of slim and thin ADs within the observed spectral window, suggest that additional physical processes or very special geometry act to reduce the extreme UV radiation in fast accreting AGN. This may be related to photon trapping, strong winds, and perhaps other yet unknown physical processes.
86 - K. Rubinur , M. Das , P. Kharb 2020
Simulations expect an enhanced star-formation and active galactic nuclei (AGN) activity during galaxy mergers, which can lead to formation of binary/dual AGN. AGN feedback can enhance or suppress star-formation. We have carried out a pilot study of a sample of 10 dual nuclei galaxies with AstroSats Ultraviolet Imaging Telescope (UVIT). Here, we present the initial results for two sample galaxies (Mrk 739, ESO 509) and deep multi-wavelength data of another galaxy (Mrk 212). UVIT observations have revealed signatures of positive AGN feedback in Mrk 739 and Mrk 212, and negative feedback in ESO 509. Deeper UVIT observations have recently been approved; these will provide better constraints on star-formation as well as AGN feedback in these systems.
A supermassive black hole (SMBH) ejected from the potential well of its host galaxy via gravitational wave recoil carries important information about the mass ratio and spin alignment of the pre-merger SMBH binary. Such a recoiling SMBH may be detectable as an active galactic nucleus (AGN) broad line region offset by up to 10,kpc from a disturbed host galaxy. We describe a novel methodology using forward modeling with texttt{The Tractor} to search for such offset AGN in a sample of 5493 optically variable AGN detected with the Zwicky Transient Facility (ZTF). We present the discovery of 9 AGN which may be spatially offset from their host galaxies and are candidates for recoiling SMBHs. Five of these offset AGN exhibit double-peaked broad Balmer lines which may arise from unobscured accretion disk emission and four show radio emission indicative of a relativistic jet. The fraction of double-peaked emitters in our spatially offset AGN sample is significantly larger than the 16% double-peaked emitter fraction observed for ZTF AGN overall. In our sample of variable AGN we also identified 52 merging galaxies, including a new spectroscopically confirmed dual AGN. Finally, we detected the dramatic rebrightening of SDSS1133, a previously discovered variable object and recoiling SMBH candidate, in ZTF. The flare was accompanied by the re-emergence of strong P-Cygni line features indicating that it may be an outbursting luminous blue variable star.
In this paper we analyze AGN activity signatures in the rich nearby galaxy cluster Abell 1795 aiming to confirm and characterize the long-term feedback history in the system. We combine radio observations at 610 and 235 MHz from the Giant Metrewave Radio Telescope (GMRT) with 3.4 Msec X-ray data from the Chandra Observatory. Extracting radial temperature profiles, as well as X-ray and radio surface brightness profiles in three directions showing major morphological disturbances, we highlight the signatures of activity in the system. For the first time we observe radio emission corresponding to the NW X-ray depression, which provides evidence in favor of the classification of the depression as a cavity. We identify two other X-ray cavities situated NW and SW of the AGN. While the central radio emission corresponding to the inner cavities shows flatter spectral index, the radio extensions associated with the furthest X-ray cavities consist of aged plasma. All observed signatures both in radio and X-ray are consistent with several consecutive episodes of AGN activity, which gave rise to the observed morphology NW and SW from the core. In the southern region, we confirm the cooling wake hypothesis for the origin of the long tail. The deep X-ray data also allows us to distinguish significant distortions in the tails inner parts, which we attribute to the activity of the AGN.
We analyze a suite of $30$ high resolution zoom-in cosmological hydrodynamic simulations of massive galaxies with stellar masses $M_{ast} > 10^{10.9} M_odot$, with the goal of better understanding merger activity in AGN, AGN activity in merging systems, SMBH growth during mergers, and the role of gas content. Using the radiative transfer code textsc{Powderday}, we generate HST-WFC3 F160W synthetic observations of redshift $0.5 < z < 3$ central galaxies, add noise properties similar to the CANDELS survey, and measure morphological properties from the synthetic images using commonly adopted non-parametric statistics. We compare the distributions of morphological properties measured from the synthetic images with a sample of inactive galaxies and X-ray selected AGN hosts from CANDELS. We study the connection between mergers and AGN activity in the simulations, the synthetic images, and the observed CANDELS sample. We find that, in both the simulations and CANDELS, even the most luminous $(L_{rm bol} > 10^{45}$ erg s$^{-1})$ AGN in our sample are no more likely than inactive galaxies $(L_{rm bol} < 10^{43}$ erg s$^{-1})$ to be found in merging systems. We also find that AGN activity is not overall enhanced by mergers, nor enhanced at any specific time in the $1$ Gyr preceding and following a merger. Even gas rich major mergers (stellar mass ratio $>$1:4) do not necessarily enhance AGN activity or significantly grow the central SMBH. We conclude that in the simulated massive galaxies studied here, mergers are not the primary drivers of AGN.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا