No Arabic abstract
We investigate the prevalence of AGN in the high-redshift protocluster $rm{Cl},0218.3$-$0510$ at $z=1.62$. Using imaging from the Chandra X-ray Telescope, we find a large overdensity of AGN in the protocluster; a factor of $23pm9$ times the field density of AGN. Only half of this AGN overdensity is due to the overdensity of massive galaxies in the protocluster (a factor of $11pm2$), as we find that $17^{+6}_{-5}%$ of massive galaxies ($M_* > 10^{10},rm{M}_{odot}$) in the protocluster host an X-ray luminous AGN, compared to $8pm1%$ in the field. This corresponds to an enhancement of AGN activity in massive protocluster galaxies by a factor of $2.1pm0.7$ at $1.6sigma$ significance. We also find that the AGN overdensity is centrally concentrated, located within 3 arcmin and most pronounced within 1 arcmin of the centre of the protocluster. Our results confirm that there is a reversal in the local anti-correlation between galaxy density and AGN activity, so there is an enhancement of AGN in high-redshift protoclusters. We compare the properties of AGN in the protocluster to the field and find no significant differences in the distributions of their stellar mass, X-ray luminosity, or hardness ratio. We therefore suggest that triggering mechanisms are similar in both environments, and that the mechanisms simply occur more frequently in denser environments.
We investigate the effects of dense environments on galaxy evolution by examining how the properties of galaxies in the z = 1.6 protocluster Cl 0218.3-0510 depend on their location. We determine galaxy properties using spectral energy distribution fitting to 14-band photometry, including data at three wavelengths that tightly bracket the Balmer and 4000A breaks of the protocluster galaxies. We find that two-thirds of the protocluster galaxies, which lie between several compact groups, are indistinguishable from field galaxies. The other third, which reside within the groups, differ significantly from the intergroup galaxies in both colour and specific star formation rate. We find that the fraction of red galaxies within the massive protocluster groups is twice that of the intergroup region. These excess red galaxies are due to enhanced fractions of both passive galaxies (1.7 times that of the intergroup region) and dusty star-forming galaxies (3 times that of the intergroup region). We infer that some protocluster galaxies are processed in the groups before the cluster collapses. These processes act to suppress star formation and change the mode of star formation from unobscured to obscured.
Undisturbed galaxy clusters are characterized by a massive and large elliptical galaxy at their center, i.e. the Brightest Cluster Galaxy (BCG). How these central galaxies form is still debated. According to most models, a typical epoch for their assembly is z~1-2. We have performed a detailed multi-wavelength analysis of the core of XDCPJ0044.0-2033 (XDCP0044), one of the most massive and densest galaxy clusters currently known at redshift z~1.6, whose central galaxy population shows high star formation compared to lower-z clusters and an X-ray AGN located close to its center. SINFONI J-, H- and KMOS YJ-, H- bands spectroscopic data have been analyzed, together with deep archival HST photometric data in F105W, F140W, and F160W bands, Chandra X-ray, radio JVLA data at 1-2 GHz, and ALMA band-6 observations. In the central region of the cluster (~70x70 kpc^2), 2 systems of interacting galaxies have been identified and studied (Complex A and B), with a total of 7 confirmed cluster members. These galaxies show perturbed morphologies and 3 of them show signs of AGN activity. In particular, 2 type-1 AGN with typical broad lines have been found at the center of each complex (both of them X-ray obscured and highly accreting; Eddington ratio ~0.5), while a type-2 AGN has been discovered in Complex A. The AGN at the center of Complex B is also detected in X-ray while the other 2 are spatially related to radio emission. The 3 AGN provide one of the closest AGN triple at z>1 revealed so far with a minimum(maximum) projected distance of ~10(40) kpc. The observation of high star formation, merger signatures and nuclear activity in the core of XDCP0044 suggests that all these processes are key ingredients in shaping the nascent BCG. According to our data, XDCP0044 could form a typical massive galaxy of 10^12 Msun, hosting a Black Hole of 2x10^8-10^9 Msun, in a time scale of the order of ~2.5 Gyrs.
We present results from a new ultra-deep 400 ks Chandra observation of the SSA22 protocluster at z = 3.09. We have studied the X-ray properties of 234 z ~ 3 Lyman break galaxies (LBGs; protocluster and field) and 158 z = 3.09 Ly-alpha emitters (LAEs) in SSA22 to measure the influence of the high-density protocluster environment on the accretion activity of supermassive black holes (SMBHs) in these UV-selected star forming populations. We detect individually X-ray emission from active galactic nuclei (AGNs) in six LBGs and five LAEs; due to small overlap between the LBG and LAE source population, ten of these sources are unique. At least six and potentially eight of these sources are members of the protocluster. These sources have rest-frame 8-32 keV luminosities in the range of L_8-32 keV = (3-50) X 10^{43} ergs/s and an average observed-frame 2-8 keV to 0.5-2 keV band-ratio of ~0.8 (mean effective photon index of Gamma_eff = 1.1), suggesting significant absorption columns of N_H > 10^{22}-10^{24} cm^{-2}. We find that the fraction of LBGs and LAEs in the z = 3.09 protocluster harboring an AGN with L_8-32 keV > 3 X 10^{43} ergs/s is 9.5^{+12.7}_{-6.1}% and 5.1^{+6.8}_{-3.3}%, respectively. These AGN fractions are somewhat larger (by a mean factor of 6.1^{+10.3}_{-3.6}; significant at the 95% confidence level) than z ~ 3 sources found in lower-density field environments. Theoretical models imply that these results may be due to the presence of more actively growing and/or massive SMBHs in LBGs and LAEs within the protocluster compared to the field. Such a result is expected in a scenario where enhanced merger activity in the protocluster drives accelerated galaxy and SMBH growth at z > 2-3. (abridged)
We examine possible environmental sources of the enhanced star formation and active galactic nucleus (AGN) activity in the $z = 3.09$ SSA22 protocluster using Hubble WFC3 F160W ($sim1.6 rm mu m$) observations of the SSA22 field, including new observations centered on eight X-ray selected protocluster AGN. To investigate the role of mergers in the observed AGN and star formation enhancement, we apply both quantitative (Sersic-fit and Gini-$M_{20}$) and visual morphological classifications to F160W images of protocluster Lyman break galaxies (LBGs) in the fields of the X-ray AGN and $z sim 3$ field LBGs in SSA22 and GOODS-N. We find no statistically significant differences between the morphologies and merger fractions of protocluster and field LBGs, though we are limited by small number statistics in the protocluster. We also fit the UV-to-near-IR spectral energy distributions (SED) of F160W-detected protocluster and field LBGs to characterize their stellar masses and star formation histories (SFH). We find that the mean protocluster LBG is by a factor of $sim2$ times more massive and more attenuated than the mean $z sim 3$ field LBG. We take our results to suggest that ongoing mergers are not more common among protocluster LBGs than field LBGs, though protocluster LBGs appear to be more massive. We speculate that the larger mass of the protocluster LBGs contributes to the enhancement of SMBH mass and accretion rate in the protocluster, which in turn drives the observed protocluster AGN enhancement.
We report a massive quiescent galaxy at $z_{rm spec}=3.0922^{+0.008}_{-0.004}$ spectroscopically confirmed at a protocluster in the SSA22 field by detecting the Balmer and Ca {footnotesize II} absorption features with multi-object spectrometer for infrared exploration (MOSFIRE) on the Keck I telescope. This is the most distant quiescent galaxy confirmed in a protocluster to date. We fit the optical to mid-infrared photometry and spectrum simultaneously with spectral energy distribution (SED) models of parametric and nonparametric star formation histories (SFH). Both models fit the observed SED well and confirm that this object is a massive quiescent galaxy with the stellar mass of $log(rm M_{star}/M_{odot}) = 11.26^{+0.03}_{-0.04}$ and $11.54^{+0.03}_{-0.00}$, and star formation rate of $rm SFR/M_{odot}~yr^{-1} <0.3$ and $=0.01^{+0.03}_{-0.01}$ for parametric and nonparametric models, respectively. The SFH from the former modeling is described as an instantaneous starburst while that of the latter modeling is longer-lived but both models agree with a sudden quenching of the star formation at $sim0.6$ Gyr ago. This massive quiescent galaxy is confirmed in an extremely dense group of galaxies predicted as a progenitor of a brightest cluster galaxy formed via multiple mergers in cosmological numerical simulations. We newly find three plausible [O III]$lambda$5007 emitters at $3.0791leq z_{rm spec}leq3.0833$ happened to be detected around the target. Two of them just between the target and its nearest massive galaxy are possible evidence of their interactions. They suggest the future strong size and stellar mass evolution of this massive quiescent galaxy via mergers.