Do you want to publish a course? Click here

Galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z=1.58: red-sequence formation, massive galaxy assembly, and central star formation activity

154   0   0.0 ( 0 )
 Added by Rene Fassbender
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z=1.58, which constitutes the most extreme matter density peak at this redshift currently known. We analyze deep VLT/HAWK-I NIR data in the J- and Ks-bands, complemented by Subaru imaging in i and V, Spitzer observations at 4.5 micron, and new spectroscopic observations with VLT/FORS2. We detect a cluster-associated excess population of about 90 galaxies, which follows a centrally peaked, compact NFW galaxy surface density profile with a concentration of c200~10. Based on the Spitzer 4.5 micron imaging data, we measure a stellar mass fraction of fstar,500=(3.3+-1.4)% consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple z_f=3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass assembly epoch through merging processes. Consequently, the bright end of the cluster red-sequence is not in place, while at intermediate magnitudes [Ks*,Ks*+1.6] a red-locus population is present, which is then sharply truncated at magnitudes fainter than Ks*+1.6. The dominant cluster core population comprises post-quenched galaxies transitioning towards the red-sequence at intermediate magnitudes, while additionally a significant blue cloud population of faint star-forming galaxies is present even in the densest central regions. Our observations lend support to the scenario in which the dominant effect of the dense z~1.6 cluster environment is an accelerated mass assembly timescale through merging activity that is responsible for driving core galaxies across the mass quenching threshold of log(Mstar/Msun)~10.4.



rate research

Read More

We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z=1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high redshift cluster. Extended emission from the Intra Cluster Medium (ICM) is detected at a very high significance level (S/N~20) on a circular region with a 44 radius, corresponding to $R_{ext}=375$ kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature $kT=6.7^{+1.3}_{-0.9}$ keV, and a iron abundance $Z_{Fe} = 0.41_{-0.26}^{+0.29}Z_{Fe_odot}$ (error bars correspond to 1 $sigma$). We fit the background-subtracted surface brightness profile with a single $beta$-model out to 44, finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius $R_{ext}=375$ kpc to be $M_{ICM}(r<R_{ext}) = (1.48 pm 0.20) times 10^{13} M_odot$. Under the assumption of hydrostatic equilibrium and assuming isothermality within $R_{ext}$, the total mass is $M_{2500}= 1.23_{-0.27}^{+0.46} times 10 ^{14} M_odot$ for $R_{2500} = 240_{-20}^{+30}$ kpc. Extrapolating the profile at radii larger than the extraction radius $R_{ext}$ we find $M_{500} = 3.2_{-0.6}^{+0.9} times 10 ^{14}M_odot$ for $R_{500} = 562_{-37}^{+50}$ kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift $zsim 1.6$, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 $Lambda$CDM cosmology.
There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1<z<2 is dominated by more massive galaxies, which undergo a faster evolution. Massive galaxies tend to inhabit very massive halos such as galaxy groups and clusters. We aim to understand whether the observed galaxy downsizing could be interpreted as a halo downsizing, whereas the most massive halos, and their galaxy populations, evolve more rapidly than the halos of lower mass. Thus, we study the contribution to the CSFH of galaxies inhabiting group-sized halos. This is done through the study of the evolution of the Infra-Red (IR) luminosity function of group galaxies from redshift 0 to ~1.6. We use a sample of 39 X-ray selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and Hersche PACS. Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute <10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift >~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a halo downsizing scenario and highlight the significant role of environment quenching in shaping the CSFH.
202 - Joana S. Santos 2014
Dusty, star-forming galaxies have a critical role in the formation and evolution of massive galaxies in the Universe. Using deep far-infrared imaging in the range 100-500um obtained with the Herschel telescope, we investigate the dust-obscured star formation in the galaxy cluster XDCP J0044.0-2033 at z=1.58, the most massive cluster at z >1.5, with a measured mass M200= 4.7x10$^{14}$ Msun. We perform an analysis of the spectral energy distributions (SEDs) of 12 cluster members (5 spectroscopically confirmed) detected with >3$sigma$ significance in the PACS maps, all ULIRGs. The individual star formation rates (SFRs) lie in the range 155-824 Ms/yr, with dust temperatures of 24$pm$35 K. We measure a strikingly high amount of star formation (SF) in the cluster core, SFR (< 250 kpc) > 1875$pm$158 Ms/yr, 4x higher than the amount of star formation in the cluster outskirts. This scenario is unprecedented in a galaxy cluster, showing for the first time a reversal of the SF-density relation at z~1.6 in a massive cluster.
152 - Joana S. Santos 2011
We report on the discovery of a very distant galaxy cluster serendipitously detected in the archive of the XMM-Newton mission, within the scope of the XMM-Newton Distant Cluster Project (XDCP). XMMUJ0044.0-2033 was detected at a high significance level (5sigma) as a compact, but significantly extended source in the X-ray data, with a soft-band flux f(r<40)=(1.5+-0.3)x10^(-14) erg/s/cm2. Optical/NIR follow-up observations confirmed the presence of an overdensity of red galaxies matching the X-ray emission. The cluster was spectroscopically confirmed to be at z=1.579 using ground-based VLT/FORS2 spectroscopy. The analysis of the I-H colour-magnitude diagram shows a sequence of red galaxies with a colour range [3.7 < I-H < 4.6] within 1 from the cluster X-ray emission peak. However, the three spectroscopic members (all with complex morphology) have significantly bluer colours relative to the observed red-sequence. In addition, two of the three cluster members have [OII] emission, indicative of on-going star formation. Using the spectroscopic redshift we estimated the X-ray bolometric luminosity, Lbol = 5.8x10^44 erg/s, implying a massive galaxy cluster. This places XMMU J0044.0-2033 at the forefront of massive distant clusters, closing the gap between lower redshift systems and recently discovered proto- and low-mass clusters at z >1.6.
We use HST/WFC3 imaging to study the red population in the IR-selected, X-ray detected, low-mass cluster Cl J1449+0856 at z=2, one of the few bona-fide established clusters discovered at this redshift, and likely a typical progenitor of an average massive cluster today. This study explores the presence and significance of an early red sequence in the core of this structure, investigating the nature of red sequence galaxies, highlighting environmental effects on cluster galaxy populations at high redshift, and at the same time underlining similarities and differences with other distant dense environments. Our results suggest that the red population in the core of Cl J1449+0856 is made of a mixture of quiescent and dusty star-forming galaxies, with a seedling of the future red sequence already growing in the very central cluster region, and already characterising the inner cluster core with respect to lower density environments. On the other hand, the color-magnitude diagram of this cluster is definitely different from that of lower-redshift (z<1) clusters, as well as of some rare particularly evolved massive clusters at similar redshift, and it is suggestive of a transition phase between active star formation and passive evolution occurring in the proto-cluster and established lower-redshift cluster regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا