Do you want to publish a course? Click here

Low-Complexity Joint Power Allocation and Trajectory Design for UAV-Enabled Secure Communications with Power Splitting

167   0   0.0 ( 0 )
 Added by Kaidi Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

An unmanned aerial vehicle (UAV)-aided secure communication system is conceived and investigated, where the UAV transmits legitimate information to a ground user in the presence of an eavesdropper (Eve). To guarantee the security, the UAV employs a power splitting approach, where its transmit power can be divided into two parts for transmitting confidential messages and artificial noise (AN), respectively. We aim to maximize the average secrecy rate by jointly optimizing the UAVs trajectory, the transmit power levels and the corresponding power splitting ratios allocated to different time slots during the whole flight time, subject to both the maximum UAV speed constraint, the total mobility energy constraint, the total transmit power constraint, and other related constraints. To efficiently tackle this non-convex optimization problem, we propose an iterative algorithm by blending the benefits of the block coordinate descent (BCD) method, the concave-convex procedure (CCCP) and the alternating direction method of multipliers (ADMM). Specially, we show that the proposed algorithm exhibits very low computational complexity and each of its updating steps can be formulated in a nearly closed form. Our simulation results validate the efficiency of the proposed algorithm.



rate research

Read More

Unmanned aerial vehicle (UAV) swarm has emerged as a promising novel paradigm to achieve better coverage and higher capacity for future wireless network by exploiting the more favorable line-of-sight (LoS) propagation. To reap the potential gains of UAV swarm, the remote control signal sent by ground control unit (GCU) is essential, whereas the control signal quality are susceptible in practice due to the effect of the adjacent channel interference (ACI) and the external interference (EI) from radiation sources distributed across the region. To tackle these challenges, this paper considers priority-aware resource coordination in a multi-UAV communication system, where multiple UAVs are controlled by a GCU to perform certain tasks with a pre-defined trajectory. Specifically, we maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the UAVs by jointly optimizing channel assignment and power allocation strategy under stringent resource availability constraints. According to the intensity of ACI, we consider the corresponding problem in two scenarios, i.e., Null-ACI and ACI systems. By virtue of the particular problem structure in Null-ACI case, we first recast the formulation into an equivalent yet more tractable form and obtain the global optimal solution via Hungarian algorithm. For general ACI systems, we develop an efficient iterative algorithm for its solution based on the smooth approximation and alternating optimization methods. Extensive simulation results demonstrate that the proposed algorithms can significantly enhance the minimum SINR among all the UAVs and adapt the allocation of communication resources to diverse mission priority.
The research efforts on cellular vehicle-to-everything (V2X) communications are gaining momentum with each passing year. It is considered as a paradigm-altering approach to connect a large number of vehicles with minimal cost of deployment and maintenance. This article aims to further push the state-of-the-art of cellular V2X communications by providing an optimization framework for wireless charging, power allocation, and resource block assignment. Specifically, we design a network model where roadside objects use wireless power from RF signals of electric vehicles for charging and information processing. Moreover, due to the resource-constraint nature of cellular V2X, the power allocation and resource block assignment are performed to efficiently use the resources. The proposed optimization framework shows an improvement in terms of the overall energy efficiency of the network when compared with the baseline technique. The performance gains of the proposed solution clearly demonstrate its feasibility and utility for cellular V2X communications.
The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an already existed network. In this work, we consider a transmission mechanism that aims to improve the data rate between a terrestrial base station (BS) and user equipment (UE) through deploying multiple UAVs relaying the desired data flow. Considering the coexistence of this network with other established communication networks, we take into account the effect of interference, which is incurred by the existing nodes. Our primary goal is to optimize the three-dimensional (3D) trajectories and power allocation for the relaying UAVs to maximize the data flow while keeping the interference to existing nodes below a predefined threshold. An alternating-maximization strategy is proposed to solve the joint 3D trajectory design and power allocation for the relaying UAVs. To this end, we handle the information exchange within the network by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Simulation results show that our approach can considerably improve the information flow while the interference threshold constraint is met.
In this paper, the problem of unmanned aerial vehicle (UAV) deployment, power allocation, and bandwidth allocation is investigated for a UAV-assisted wireless system operating at terahertz (THz) frequencies. In the studied model, one UAV can service ground users using the THz frequency band. However, the highly uncertain THz channel will introduce new challenges to the UAV location, user power, and bandwidth allocation optimization problems. Therefore, it is necessary to design a novel framework to deploy UAVs in the THz wireless systems. This problem is formally posed as an optimization problem whose goal is to minimize the total delays of the uplink and downlink transmissions between the UAV and the ground users by jointly optimizing the deployment of the UAV, the transmit power and the bandwidth of each user. The communication delay is crucial for emergency communications. To tackle this nonconvex delay minimization problem, an alternating algorithm is proposed while iteratively solving three subproblems: location optimization subproblem, power control subproblem, and bandwidth allocation subproblem. Simulation results show that the proposed algorithm can reduce the transmission delay by up to $59.3%$, $49.8%$ and $75.5%$ respectively compared to baseline algorithms that optimize only UAV location, bandwidth allocation or transmit power control.
116 - Hong Ren , Cunhua Pan , Kezhi Wang 2020
This letter considers an unmanned aerial vehicle (UAV)-enabled relay communication system for delivering latency-critical messages with ultra-high reliability, where the relay is operating under amplifier-and-forward (AF) mode. We aim to jointly optimize the UAV location and power to minimize decoding error probability while guaranteeing the latency constraints. Both the free-space channel model and three-dimensional (3-D) channel model are considered. For the first model, we propose a low-complexity iterative algorithm to solve the problem, while globally optimal solution is derived for the case when the signal-to-noise ratio (SNR) is extremely high. For the second model, we also propose a low-complexity iterative algorithm to solve the problem. Simulation results confirm the performance advantages of our proposed algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا