Do you want to publish a course? Click here

Interference Avoidance in UAV-Assisted Networks: Joint 3D Trajectory Design and Power Allocation

115   0   0.0 ( 0 )
 Added by Ali Rahmati
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an already existed network. In this work, we consider a transmission mechanism that aims to improve the data rate between a terrestrial base station (BS) and user equipment (UE) through deploying multiple UAVs relaying the desired data flow. Considering the coexistence of this network with other established communication networks, we take into account the effect of interference, which is incurred by the existing nodes. Our primary goal is to optimize the three-dimensional (3D) trajectories and power allocation for the relaying UAVs to maximize the data flow while keeping the interference to existing nodes below a predefined threshold. An alternating-maximization strategy is proposed to solve the joint 3D trajectory design and power allocation for the relaying UAVs. To this end, we handle the information exchange within the network by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Simulation results show that our approach can considerably improve the information flow while the interference threshold constraint is met.



rate research

Read More

109 - Yao Tang , Man Hon Cheung , 2019
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV assisted wireless communication system. Specifically, we consider the UAVs are deployed as aerial base stations to serve ground users who move between different regions. We maximize the throughput of ground users in the downlink communication by optimizing the UAVs trajectories, while taking into account the impact of the user mobility, propulsion energy consumption, and UAVs mutual interference. We formulate the problem as a route selection problem in an acyclic directed graph. Each vertex represents a task associated with a reward on the average user throughput in a region-time point, while each edge is associated with a cost on the energy propulsion consumption during flying and hovering. For the centralized trajectory design, we first propose the shortest path scheme that determines the optimal trajectory for the single UAV case. We also propose the centralized route selection (CRS) scheme to systematically compute the optimal trajectories for the more general multiple-UAV case. Due to the NP-hardness of the centralized problem, we consider the distributed trajectory design that each UAV selects its trajectory autonomously and propose the distributed route selection (DRS) scheme, which will converge to a pure strategy Nash equilibrium within a finite number of iterations.
The recent trend towards the high-speed transportation system has spurred the development of high-speed trains (HSTs). However, enabling HST users with seamless wireless connectivity using the roadside units (RSUs) is extremely challenging, mostly due to the lack of line of sight link. To address this issue, we propose a novel framework that uses intelligent reflecting surfaces (IRS)-enabled unmanned aerial vehicles (UAVs) to provide line of sight communication to HST users. First, we formulate the optimization problem where the objective is to maximize the minimum achievable rate of HSTs by jointly optimizing the trajectory of UAV and the phase-shift of IRS. Due to the non-convex nature of the formulated problem, it is decomposed into two subproblems: IRS phase-shift problem and UAV trajectory optimization problem. Next, a Binary Integer Linear Programming (BILP) and a Soft Actor-Critic (SAC) are constructed in order to solve our decomposed problems. Finally, comprehensive numerical results are provided in order to show the effectiveness of our proposed framework.
Integrating unmanned aerial vehicles (UAV) to non-orthogonal multiple access (NOMA) visible light communications (VLC) exposes many potentials over VLC and NOMA-VLC systems. In this circumstance, user grouping is of importance to reduce the NOMA decoding complexity when the number of users is large; however, this issue has not been considered in the existing study. In this paper, we aim to maximize the weighted sum-rate of all the users by jointly optimizing UAV placement, user grouping, and power allocation in downlink NOMA-VLC systems. We first consider an efficient user clustering strategy, then apply a swarm intelligence approach, namely Harris Hawk Optimization (HHO), to solve the joint UAV placement and power allocation problem. Simulation results show outperformance of the proposed algorithm in comparison with four alternatives: OMA, NOMA without pairing, NOMA-VLC with fixed UAV placement, and random user clustering.
161 - Weisen Shi , Junlng Li , Nan Cheng 2019
Drone base station (DBS) is a promising technique to extend wireless connections for uncovered users of terrestrial radio access networks (RAN). To improve user fairness and network performance, in this paper, we design 3D trajectories of multiple DBSs in the drone assisted radio access networks (DA-RAN) where DBSs fly over associated areas of interests (AoIs) and relay communications between the base station (BS) and users in AoIs. We formulate the multi-DBS 3D trajectory planning and scheduling as a mixed integer non-linear programming (MINLP) problem with the objective of minimizing the average DBS-to-user (D2U) pathloss. The 3D trajectory variations in both horizontal and vertical directions, as well as the state-of-the-art DBS-related channel models are considered in the formulation. To address the non-convexity and NP-hardness of the MINLP problem, we first decouple it into multiple integer linear programming (ILP) and quasi-convex sub-problems in which AoI association, D2U communication scheduling, horizontal trajectories and flying heights of DBSs are respectively optimized. Then, we design a multi-DBS 3D trajectory planning and scheduling algorithm to solve the sub-problems iteratively based on the block coordinate descent (BCD) method. A k-means-based initial trajectory generation and a search-based start slot scheduling are considered in the proposed algorithm to improve trajectory design performance and ensure inter-DBS distance constraint, respectively. Extensive simulations are conducted to investigate the impacts of DBS quantity, horizontal speed and initial trajectory on the trajectory planning results. Compared with the static DBS deployment, the proposed trajectory planning can achieve 10-15 dB reduction on average D2U pathloss, and reduce the D2U pathloss standard deviation by 68%, which indicate the improvements of network performance and user fairness.
An unmanned aerial vehicle (UAV)-aided secure communication system is conceived and investigated, where the UAV transmits legitimate information to a ground user in the presence of an eavesdropper (Eve). To guarantee the security, the UAV employs a power splitting approach, where its transmit power can be divided into two parts for transmitting confidential messages and artificial noise (AN), respectively. We aim to maximize the average secrecy rate by jointly optimizing the UAVs trajectory, the transmit power levels and the corresponding power splitting ratios allocated to different time slots during the whole flight time, subject to both the maximum UAV speed constraint, the total mobility energy constraint, the total transmit power constraint, and other related constraints. To efficiently tackle this non-convex optimization problem, we propose an iterative algorithm by blending the benefits of the block coordinate descent (BCD) method, the concave-convex procedure (CCCP) and the alternating direction method of multipliers (ADMM). Specially, we show that the proposed algorithm exhibits very low computational complexity and each of its updating steps can be formulated in a nearly closed form. Our simulation results validate the efficiency of the proposed algorithm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا