Do you want to publish a course? Click here

Joint Transmit Power and Placement Optimization for URLLC-enabled UAV Relay Systems

117   0   0.0 ( 0 )
 Added by Pan Cunhua
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This letter considers an unmanned aerial vehicle (UAV)-enabled relay communication system for delivering latency-critical messages with ultra-high reliability, where the relay is operating under amplifier-and-forward (AF) mode. We aim to jointly optimize the UAV location and power to minimize decoding error probability while guaranteeing the latency constraints. Both the free-space channel model and three-dimensional (3-D) channel model are considered. For the first model, we propose a low-complexity iterative algorithm to solve the problem, while globally optimal solution is derived for the case when the signal-to-noise ratio (SNR) is extremely high. For the second model, we also propose a low-complexity iterative algorithm to solve the problem. Simulation results confirm the performance advantages of our proposed algorithms.



rate research

Read More

The Fourth Industrial Revolution (Industrial 4.0) is coming, and this revolution will fundamentally enhance the way the factories manufacture products. The conventional wired lines connecting central controller to robots or actuators will be replaced by wireless communication networks due to its low cost of maintenance and high deployment flexibility. However, some critical industrial applications require ultra-high reliability and low latency communication (URLLC). In this paper, we advocate the adoption of massive multiple-input multiple output (MIMO) to support the wireless transmission for industrial applications as it can provide deterministic communications similar as wired lines thanks to its channel hardening effects. To reduce the latency, the channel blocklength for packet transmission is finite, and suffers from transmission rate degradation and decoding error probability. Thus, conventional resource allocation for massive MIMO transmission based on Shannon capacity assuming the infinite channel blocklength is no longer optimal. We first derive the closed-form expression of lower bound (LB) of achievable uplink data rate for massive MIMO system with imperfect channel state information (CSI) for both maximum-ratio combining (MRC) and zero-forcing (ZF) receivers. Then, we propose novel low-complexity algorithms to solve the achievable data rate maximization problems by jointly optimizing the pilot and payload transmission power for both MRC and ZF. Simulation results confirm the rapid convergence speed and performance advantage over the existing benchmark algorithms.
Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tackle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAVs trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes.
124 - Hong Ren , Cunhua Pan , Kezhi Wang 2019
In this paper, we investigate the average achievable data rate (AADR) of the control information delivery from the ground control station (GCS) to unmanned-aerial-vehicle (UAV) under a 3-D channel, which requires ultra-reliable and low-latency communications (URLLC) to avoid collision. The value of AADR can give insights on the packet size design. Achievable data rate under short channel blocklength is adopted to characterize the system performance. The UAV is assumed to be uniformly distributed within a restricted space. We first adopt the Gaussian-Chebyshev quadrature (GCQ) to approximate the exact AADR. The tight lower bound of AADR is derived in a closed form. Numerical results verify the correctness and tightness of our derived results.
In this paper, the problem of unmanned aerial vehicle (UAV) deployment, power allocation, and bandwidth allocation is investigated for a UAV-assisted wireless system operating at terahertz (THz) frequencies. In the studied model, one UAV can service ground users using the THz frequency band. However, the highly uncertain THz channel will introduce new challenges to the UAV location, user power, and bandwidth allocation optimization problems. Therefore, it is necessary to design a novel framework to deploy UAVs in the THz wireless systems. This problem is formally posed as an optimization problem whose goal is to minimize the total delays of the uplink and downlink transmissions between the UAV and the ground users by jointly optimizing the deployment of the UAV, the transmit power and the bandwidth of each user. The communication delay is crucial for emergency communications. To tackle this nonconvex delay minimization problem, an alternating algorithm is proposed while iteratively solving three subproblems: location optimization subproblem, power control subproblem, and bandwidth allocation subproblem. Simulation results show that the proposed algorithm can reduce the transmission delay by up to $59.3%$, $49.8%$ and $75.5%$ respectively compared to baseline algorithms that optimize only UAV location, bandwidth allocation or transmit power control.
We consider the relaying application of unmanned aerial vehicles (UAVs), in which UAVs are placed between two transceivers (TRs) to increase the throughput of the system. Instead of studying the placement of UAVs as pursued in existing literature, we focus on investigating the placement of a jammer or a major source of interference on the ground to effectively degrade the performance of the system, which is measured by the maximum achievable data rate of transmission between the TRs. We demonstrate that the optimal placement of the jammer is in general a non-convex optimization problem, for which obtaining the solution directly is intractable. Afterward, using the inherent characteristics of the signal-to-interference ratio (SIR) expressions, we propose a tractable approach to find the optimal position of the jammer. Based on the proposed approach, we investigate the optimal positioning of the jammer in both dual-hop and multi-hop UAV relaying settings. Numerical simulations are provided to evaluate the performance of our proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا