No Arabic abstract
In the past decades, topological concepts have emerged to classify matter states beyond the Ginzburg-Landau symmetry breaking paradigm. The underlying global invariants are usually characterized by integers, such as Chern or winding numbers. Very recently, band topology characterized by non-Abelian topological charges has been proposed, which possess non-commutative and fruitful braiding structures with multiple (>1) bandgaps entangled together. Despite many potential exquisite applications including quantum computations, no experimental observation of non-Abelian topological charges has been reported. Here, we experimentally observe the non-Abelian topological charges in a PT (parity and time-reversal) symmetric system. More importantly, we propose non-Abelian bulk-edge correspondence, where edge states are found to be described by non-Abelian charges. Our work opens the door towards non-Abelian topological phase characterization and manipulation.
A modified periodic boundary condition adequate for non-hermitian topological systems is proposed. Under this boundary condition a topological number characterizing the system is defined in the same way as in the corresponding hermitian system and hence, at the cost of introducing an additional parameter that characterizes the non-hermitian skin effect, the idea of bulk-edge correspondence in the hermitian limit can be applied almost as it is. We develop this framework through the analysis of a non-hermitian SSH model with chiral symmetry, and prove the bulk-edge correspondence in a generalized parameter space. A finite region in this parameter space with a nontrivial pair of chiral winding numbers is identified as topologically nontrivial, indicating the existence of a topologically protected edge state under open boundary.
Very recently, increasing attention has been focused on non-Abelian topological charges, e.g. the quaternion group Q8. Different from Abelian topological band insulators, these systems involve multiple tangled bulk bandgaps and support non-trivial edge states that manifest the non-Abelian topological features. Furthermore, a system with even or odd number of bands will exhibit significant difference in non-Abelian topological classifications. Up to now, there is scant research investigating the even-band non-Abelian topological insulators. Here, we both theoretically explored and experimentally realized a four-band PT (inversion and time-reversal) symmetric system, where two new classes of topological charges as well as edge states are comprehensively studied. We illustrate their difference from four-dimensional rotation senses on the stereographically projected Clifford tori. We show the evolution of bulk topology by extending the 1D Hamiltonian onto a 2D plane and provide the accompanying edge state distributions following an analytical method. Our work presents an exhaustive study of four-band non-Abelian topological insulators and paves the way to other even band systems.
The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport properties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2,3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Although the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.
The same bulk two-dimensional topological phase can have multiple distinct, fully-chiral edge phases. We show that this can occur in the integer quantum Hall states at $ u=8$ and 12, with experimentally-testable consequences. We show that this can occur in Abelian fractional quantum Hall states as well, with the simplest examples being at $ u=8/7, 12/11, 8/15, 16/5$. We give a general criterion for the existence of multiple distinct chiral edge phases for the same bulk phase and discuss experimental consequences. Edge phases correspond to lattices while bulk phases correspond to genera of lattices. Since there are typically multiple lattices in a genus, the bulk-edge correspondence is typically one-to-many; there are usually many stable fully chiral edge phases corresponding to the same bulk. We explain these correspondences using the theory of integral quadratic forms. We show that fermionic systems can have edge phases with only bosonic low-energy excitations and discuss a fermionic generalization of the relation between bulk topological spins and the central charge. The latter follows from our demonstration that every fermionic topological phase can be represented as a bosonic topological phase, together with some number of filled Landau levels. Our analysis shows that every Abelian topological phase can be decomposed into a tensor product of theories associated with prime numbers $p$ in which every quasiparticle has a topological spin that is a $p^n$-th root of unity for some $n$. It also leads to a simple demonstration that all Abelian topological phases can be represented by $U(1)^N$ Chern-Simons theory parameterized by a K-matrix.
Most natural and artificial materials have crystalline structures from which abundant topological phases emerge [1-6]. The bulk-edge correspondence, widely-adopted in experiments to determine the band topology from edge properties, however, becomes inadequate in discerning various topological crystalline phases [7-17], leading to great challenges in the experimental classification of the large family of topological crystalline materials [4-6]. Theories predict that disclinations, ubiquitous crystallographic defects, provide an effective probe of crystalline topology beyond edges [18-21], which, however, has not yet been confirmed in experiments. Here, we report the experimental discovery of the bulk-disclination correspondence which is manifested as the fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns---a fundamental property of many topological crystalline insulators (TCIs). Meanwhile, the robust bound states at disclinations emerge as a secondary, but directly observable property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe those hallmark features via pump-probe and near-field detection measurements. Both the fractional charge and the localized states are demonstrated to emerge at the disclination in the TCI phase but vanish in the trivial phase. The experimental discovery of bulk-disclination correspondence unveils a novel fundamental phenomenon and a new paradigm for exploring topological materials.