No Arabic abstract
The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport properties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2,3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Although the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.
A modified periodic boundary condition adequate for non-hermitian topological systems is proposed. Under this boundary condition a topological number characterizing the system is defined in the same way as in the corresponding hermitian system and hence, at the cost of introducing an additional parameter that characterizes the non-hermitian skin effect, the idea of bulk-edge correspondence in the hermitian limit can be applied almost as it is. We develop this framework through the analysis of a non-hermitian SSH model with chiral symmetry, and prove the bulk-edge correspondence in a generalized parameter space. A finite region in this parameter space with a nontrivial pair of chiral winding numbers is identified as topologically nontrivial, indicating the existence of a topologically protected edge state under open boundary.
In the past decades, topological concepts have emerged to classify matter states beyond the Ginzburg-Landau symmetry breaking paradigm. The underlying global invariants are usually characterized by integers, such as Chern or winding numbers. Very recently, band topology characterized by non-Abelian topological charges has been proposed, which possess non-commutative and fruitful braiding structures with multiple (>1) bandgaps entangled together. Despite many potential exquisite applications including quantum computations, no experimental observation of non-Abelian topological charges has been reported. Here, we experimentally observe the non-Abelian topological charges in a PT (parity and time-reversal) symmetric system. More importantly, we propose non-Abelian bulk-edge correspondence, where edge states are found to be described by non-Abelian charges. Our work opens the door towards non-Abelian topological phase characterization and manipulation.
Bulk-boundary correspondence, a central principle in topological matter relating bulk topological invariants to edge states, breaks down in a generic class of non-Hermitian systems that have so far eluded experimental effort. Here we theoretically predict and experimentally observe non-Hermitian bulk-boundary correspondence, a fundamental generalization of the conventional bulk-boundary correspondence, in discrete-time non-unitary quantum-walk dynamics of single photons. We experimentally demonstrate photon localizations near boundaries even in the absence of topological edge states, thus confirming the non-Hermitian skin effect. Facilitated by our experimental scheme of edge-state reconstruction, we directly measure topological edge states, which match excellently with non-Bloch topological invariants calculated from localized bulk-state wave functions. Our work unequivocally establishes the non-Hermitian bulk-boundary correspondence as a general principle underlying non-Hermitian topological systems, and paves the way for a complete understanding of topological matter in open systems.
We provide a systematic and self-consistent method to calculate the generalized Brillouin Zone (GBZ) analytically in one dimensional non-Hermitian systems, which helps us to understand the non-Hermitian bulk-boundary correspondence. In general, a n-band non-Hermitian Hamiltonian is constituted by n distinct sub-GBZs, each of which is a piecewise analytic closed loop. Based on the concept of resultant, we can show that all the analytic properties of the GBZ can be characterized by an algebraic equation, the solution of which in the complex plane is dubbed as auxiliary GBZ (aGBZ). We also provide a systematic method to obtain the GBZ from aGBZ. Two physical applications are also discussed. Our method provides an analytic approach to the spectral problem of open boundary non-Hermitian systems in the thermodynamic limit.
Topological effects in edge states are clearly visible on short lengths only, thus largely impeding their studies. On larger distances, one may be able to dynamically enhance topological signatures by exploiting the high mobility of edge states with respect to bulk carriers. Our work on microwave spectroscopy highlights the responses of the edges which host very mobile carriers, while bulk carriers are drastically slowed down in the gap. Though the edges are denser than expected, we establish that charge relaxation occurs on short timescales, and suggests that edge states can be addressed selectively on timescales over which bulk carriers are frozen.