Do you want to publish a course? Click here

Multivariate Relations Aggregation Learning in Social Networks

64   0   0.0 ( 0 )
 Added by Feng Xia
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multivariate relations are general in various types of networks, such as biological networks, social networks, transportation networks, and academic networks. Due to the principle of ternary closures and the trend of group formation, the multivariate relationships in social networks are complex and rich. Therefore, in graph learning tasks of social networks, the identification and utilization of multivariate relationship information are more important. Existing graph learning methods are based on the neighborhood information diffusion mechanism, which often leads to partial omission or even lack of multivariate relationship information, and ultimately affects the accuracy and execution efficiency of the task. To address these challenges, this paper proposes the multivariate relationship aggregation learning (MORE) method, which can effectively capture the multivariate relationship information in the network environment. By aggregating node attribute features and structural features, MORE achieves higher accuracy and faster convergence speed. We conducted experiments on one citation network and five social networks. The experimental results show that the MORE model has higher accuracy than the GCN (Graph Convolutional Network) model in node classification tasks, and can significantly reduce time cost.



rate research

Read More

Given a large population, it is an intensive task to gather individual preferences over a set of alternatives and arrive at an aggregate or collective preference of the population. We show that social network underlying the population can be harnessed to accomplish this task effectively, by sampling preferences of a small subset of representative nodes. We first develop a Facebook app to create a dataset consisting of preferences of nodes and the underlying social network, using which, we develop models that capture how preferences are distributed among nodes in a typical social network. We hence propose an appropriate objective function for the problem of selecting best representative nodes. We devise two algorithms, namely, Greedy-min which provides a performance guarantee for a wide class of popular voting rules, and Greedy-sum which exhibits excellent performance in practice. We compare the performance of these proposed algorithms against random-polling and popular centrality measures, and provide a detailed analysis of the obtained results. Our analysis suggests that selecting representatives using social network information is advantageous for aggregating preferences related to personal topics (e.g., lifestyle), while random polling with a reasonable sample size is good enough for aggregating preferences related to social topics (e.g., government policies).
Simulations of infectious disease spread have long been used to understand how epidemics evolve and how to effectively treat them. However, comparatively little attention has been paid to understanding the fairness implications of different treatment strategies -- that is, how might such strategies distribute the expected disease burden differentially across various subgroups or communities in the population? In this work, we define the precision disease control problem -- the problem of optimally allocating vaccines in a social network in a step-by-step fashion -- and we use the ML Fairness Gym to simulate epidemic control and study it from both an efficiency and fairness perspective. We then present an exploratory analysis of several different environments and discuss the fairness implications of different treatment strategies.
51 - Calton Pu , Abhijit Suprem , 2020
A rapidly evolving situation such as the COVID-19 pandemic is a significant challenge for AI/ML models because of its unpredictability. %The most reliable indicator of the pandemic spreading has been the number of test positive cases. However, the tests are both incomplete (due to untested asymptomatic cases) and late (due the lag from the initial contact event, worsening symptoms, and test results). Social media can complement physical test data due to faster and higher coverage, but they present a different challenge: significant amounts of noise, misinformation and disinformation. We believe that social media can become good indicators of pandemic, provided two conditions are met. The first (True Novelty) is the capture of new, previously unknown, information from unpredictably evolving situations. The second (Fact vs. Fiction) is the distinction of verifiable facts from misinformation and disinformation. Social media information that satisfy those two conditions are called live knowledge. We apply evidence-based knowledge acquisition (EBKA) approach to collect, filter, and update live knowledge through the integration of social media sources with authoritative sources. Although limited in quantity, the reliable training data from authoritative sources enable the filtering of misinformation as well as capturing truly new information. We describe the EDNA/LITMUS tools that implement EBKA, integrating social media such as Twitter and Facebook with authoritative sources such as WHO and CDC, creating and updating live knowledge on the COVID-19 pandemic.
Although significant effort has been applied to fact-checking, the prevalence of fake news over social media, which has profound impact on justice, public trust and our society, remains a serious problem. In this work, we focus on propagation-based fake news detection, as recent studies have demonstrated that fake news and real news spread differently online. Specifically, considering the capability of graph neural networks (GNNs) in dealing with non-Euclidean data, we use GNNs to differentiate between the propagation patterns of fake and real news on social media. In particular, we concentrate on two questions: (1) Without relying on any text information, e.g., tweet content, replies and user descriptions, how accurately can GNNs identify fake news? Machine learning models are known to be vulnerable to adversarial attacks, and avoiding the dependence on text-based features can make the model less susceptible to the manipulation of advanced fake news fabricators. (2) How to deal with new, unseen data? In other words, how does a GNN trained on a given dataset perform on a new and potentially vastly different dataset? If it achieves unsatisfactory performance, how do we solve the problem without re-training the model on the entire data from scratch? We study the above questions on two datasets with thousands of labelled news items, and our results show that: (1) GNNs can achieve comparable or superior performance without any text information to state-of-the-art methods. (2) GNNs trained on a given dataset may perform poorly on new, unseen data, and direct incremental training cannot solve the problem---this issue has not been addressed in the previous work that applies GNNs for fake news detection. In order to solve the problem, we propose a method that achieves balanced performance on both existing and new datasets, by using techniques from continual learning to train GNNs incrementally.
Social learning -by observing and copying others- is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is our ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of lab-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions, and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an unreflective copying bias, which limits their social learning to the output, rather than the process, of their peers reasoning -even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behavior through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا