Do you want to publish a course? Click here

Analytical reasoning task reveals limits of social learning in networks

116   0   0.0 ( 0 )
 Added by Walter S. Lasecki
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Social learning -by observing and copying others- is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is our ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of lab-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions, and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an unreflective copying bias, which limits their social learning to the output, rather than the process, of their peers reasoning -even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behavior through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning.



rate research

Read More

91 - Abigail Z. Jacobs 2018
In-depth studies of sociotechnical systems are largely limited to single instances. Network surveys are expensive, and platforms vary in important ways, from interface design, to social norms, to historical contingencies. With single examples, we can not in general know how much of observed network structure is explained by historical accidents, random noise, or meaningful social processes, nor can we claim that network structure predicts outcomes, such as organization success or ecosystem health. Here, I show how we can adopt a comparative approach for settings where we have, or can cleverly construct, multiple instances of a network to estimate the natural variability in social systems. The comparative approach makes previously untested theories testable. Drawing on examples from the social networks literature, I discuss emerging directions in the study of populations of sociotechnical systems using insights from organization theory and ecology.
In this big data era, more and more social activities are digitized thereby becoming traceable, and thus the studies of social networks attract increasing attention from academia. It is widely believed that social networks play important role in the process of information diffusion. However, the opposite question, i.e., how does information diffusion process rebuild social networks, has been largely ignored. In this paper, we propose a new framework for understanding this reversing effect. Specifically, we first introduce a novel information diffusion model on social networks, by considering two types of individuals, i.e., smart and normal individuals, and two kinds of messages, true and false messages. Since social networks consist of human individuals, who have self-learning ability, in such a way that the trust of an individual to one of its neighbors increases (or decreases) if this individual received a true (or false) message from that neighbor. Based on such a simple self-learning mechanism, we prove that a social network can indeed become smarter, in terms of better distinguishing the true message from the false one. Moreover, we observe the emergence of social stratification based on the new model, i.e., the true messages initially posted by an individual closer to the smart one can be forwarded by more others, which is enhanced by the self-learning mechanism. We also find the crossover advantage, i.e., interconnection between two chain networks can make the related individuals possessing higher social influences, i.e., their messages can be forwarded by relatively more others. We obtained these results theoretically and validated them by simulations, which help better understand the reciprocity between social networks and information diffusion.
Peoples personal social networks are big and cluttered, and currently there is no good way to automatically organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. circles on Google+, and lists on Facebook and Twitter), however they are laborious to construct and must be updated whenever a users network grows. In this paper, we study the novel task of automatically identifying users social circles. We pose this task as a multi-membership node clustering problem on a users ego-network, a network of connections between her friends. We develop a model for detecting circles that combines network structure as well as user profile information. For each circle we learn its members and the circle-specific user profile similarity metric. Modeling node membership to multiple circles allows us to detect overlapping as well as hierarchically nested circles. Experiments show that our model accurately identifies circles on a diverse set of data from Facebook, Google+, and Twitter, for all of which we obtain hand-labeled ground-truth.
We introduce a new paradigm that is important for community detection in the realm of network analysis. Networks contain a set of strong, dominant communities, which interfere with the detection of weak, natural community structure. When most of the members of the weak communities also belong to stronger communities, they are extremely hard to be uncovered. We call the weak communities the hidden community structure. We present a novel approach called HICODE (HIdden COmmunity DEtection) that identifies the hidden community structure as well as the dominant community structure. By weakening the strength of the dominant structure, one can uncover the hidden structure beneath. Likewise, by reducing the strength of the hidden structure, one can more accurately identify the dominant structure. In this way, HICODE tackles both tasks simultaneously. Extensive experiments on real-world networks demonstrate that HICODE outperforms several state-of-the-art community detection methods in uncovering both the dominant and the hidden structure. In the Facebook university social networks, we find multiple non-redundant sets of communities that are strongly associated with residential hall, year of registration or career position of the faculties or students, while the state-of-the-art algorithms mainly locate the dominant ground truth category. In the Due to the difficulty of labeling all ground truth communities in real-world datasets, HICODE provides a promising approach to pinpoint the existing latent communities and uncover communities for which there is no ground truth. Finding this unknown structure is an extremely important community detection problem.
The ability to share social network data at the level of individual connections is beneficial to science: not only for reproducing results, but also for researchers who may wish to use it for purposes not foreseen by the data releaser. Sharing such data, however, can lead to serious privacy issues, because individuals could be re-identified, not only based on possible nodes attributes, but also from the structure of the network around them. The risk associated with re-identification can be measured and it is more serious in some networks than in others. Various optimization algorithms have been proposed to anonymize the network while keeping the number of changes minimal. However, existing algorithms do not provide guarantees on where the changes will be made, making it difficult to quantify their effect on various measures. Using network models and real data, we show that the average degree of networks is a crucial parameter for the severity of re-identification risk from nodes neighborhoods. Dense networks are more at risk, and, apart from a small band of average degree values, either almost all nodes are re-identifiable or they are all safe. Our results allow researchers to assess the privacy risk based on a small number of network statistics which are available even before the data is collected. As a rule-of-thumb, the privacy risks are high if the average degree is above 10. Guided by these results we propose a simple method based on edge sampling to mitigate the re-identification risk of nodes. Our method can be implemented already at the data collection phase. Its effect on various network measures can be estimated and corrected using sampling theory. These properties are in contrast with previous methods arbitrarily biasing the data. In this sense, our work could help in sharing network data in a statistically tractable way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا