No Arabic abstract
Current bundle adjustment solvers such as the Levenberg-Marquardt (LM) algorithm are limited by the bottleneck in solving the Reduced Camera System (RCS) whose dimension is proportional to the camera number. When the problem is scaled up, this step is neither efficient in computation nor manageable for a single compute node. In this work, we propose a stochastic bundle adjustment algorithm which seeks to decompose the RCS approximately inside the LM iterations to improve the efficiency and scalability. It first reformulates the quadratic programming problem of an LM iteration based on the clustering of the visibility graph by introducing the equality constraints across clusters. Then, we propose to relax it into a chance constrained problem and solve it through sampled convex program. The relaxation is intended to eliminate the interdependence between clusters embodied by the constraints, so that a large RCS can be decomposed into independent linear sub-problems. Numerical experiments on unordered Internet image sets and sequential SLAM image sets, as well as distributed experiments on large-scale datasets, have demonstrated the high efficiency and scalability of the proposed approach. Codes are released at https://github.com/zlthinker/STBA.
Bundle adjustment jointly optimizes camera intrinsics and extrinsics and 3D point triangulation to reconstruct a static scene. The triangulation constraint, however, is invalid for moving points captured in multiple unsynchronized videos and bundle adjustment is not designed to estimate the temporal alignment between cameras. We present a spatiotemporal bundle adjustment framework that jointly optimizes four coupled sub-problems: estimating camera intrinsics and extrinsics, triangulating static 3D points, as well as sub-frame temporal alignment between cameras and computing 3D trajectories of dynamic points. Key to our joint optimization is the careful integration of physics-based motion priors within the reconstruction pipeline, validated on a large motion capture corpus of human subjects. We devise an incremental reconstruction and alignment algorithm to strictly enforce the motion prior during the spatiotemporal bundle adjustment. This algorithm is further made more efficient by a divide and conquer scheme while still maintaining high accuracy. We apply this algorithm to reconstruct 3D motion trajectories of human bodies in dynamic events captured by multiple uncalibrated and unsynchronized video cameras in the wild. To make the reconstruction visually more interpretable, we fit a statistical 3D human body model to the asynchronous video streams.Compared to the baseline, the fitting significantly benefits from the proposed spatiotemporal bundle adjustment procedure. Because the videos are aligned with sub-frame precision, we reconstruct 3D motion at much higher temporal resolution than the input videos.
This paper presents an efficient algorithm for the least-squares problem using the point-to-plane cost, which aims to jointly optimize depth sensor poses and plane parameters for 3D reconstruction. We call this least-squares problem textbf{Planar Bundle Adjustment} (PBA), due to the similarity between this problem and the original Bundle Adjustment (BA) in visual reconstruction. As planes ubiquitously exist in the man-made environment, they are generally used as landmarks in SLAM algorithms for various depth sensors. PBA is important to reduce drift and improve the quality of the map. However, directly adopting the well-established BA framework in visual reconstruction will result in a very inefficient solution for PBA. This is because a 3D point only has one observation at a camera pose. In contrast, a depth sensor can record hundreds of points in a plane at a time, which results in a very large nonlinear least-squares problem even for a small-scale space. Fortunately, we find that there exist a special structure of the PBA problem. We introduce a reduced Jacobian matrix and a reduced residual vector, and prove that they can replace the original Jacobian matrix and residual vector in the generally adopted Levenberg-Marquardt (LM) algorithm. This significantly reduces the computational cost. Besides, when planes are combined with other features for 3D reconstruction, the reduced Jacobian matrix and residual vector can also replace the corresponding parts derived from planes. Our experimental results verify that our algorithm can significantly reduce the computational time compared to the solution using the traditional BA framework. Besides, our algorithm is faster, more accuracy, and more robust to initialization errors compared to the start-of-the-art solution using the plane-to-plane cost
Existing learning-based surface reconstruction methods from point clouds are still facing challenges in terms of scalability and preservation of details on large-scale point clouds. In this paper, we propose the SSRNet, a novel scalable learning-based method for surface reconstruction. The proposed SSRNet constructs local geometry-aware features for octree vertices and designs a scalable reconstruction pipeline, which not only greatly enhances the predication accuracy of the relative position between the vertices and the implicit surface facilitating the surface reconstruction quality, but also allows dividing the point cloud and octree vertices and processing different parts in parallel for superior scalability on large-scale point clouds with millions of points. Moreover, SSRNet demonstrates outstanding generalization capability and only needs several surface data for training, much less than other learning-based reconstruction methods, which can effectively avoid overfitting. The trained model of SSRNet on one dataset can be directly used on other datasets with superior performance. Finally, the time consumption with SSRNet on a large-scale point cloud is acceptable and competitive. To our knowledge, the proposed SSRNet is the first to really bring a convincing solution to the scalability issue of the learning-based surface reconstruction methods, and is an important step to make learning-based methods competitive with respect to geometry processing methods on real-world and challenging data. Experiments show that our method achieves a breakthrough in scalability and quality compared with state-of-the-art learning-based methods.
The problem of obtaining dense reconstruction of an object in a natural sequence of images has been long studied in computer vision. Classically this problem has been solved through the application of bundle adjustment (BA). More recently, excellent results have been attained through the application of photometric bundle adjustment (PBA) methods -- which directly minimize the photometric error across frames. A fundamental drawback to BA & PBA, however, is: (i) their reliance on having to view all points on the object, and (ii) for the object surface to be well textured. To circumvent these limitations we propose semantic PBA which incorporates a 3D object prior, obtained through deep learning, within the photometric bundle adjustment problem. We demonstrate state of the art performance in comparison to leading methods for object reconstruction across numerous natural sequences.
Recently, the philosophy of visual saliency and attention has started to gain popularity in the robotics community. Therefore, this paper aims to mimic this mechanism in SLAM framework by using saliency prediction model. Comparing with traditional SLAM that treated all feature points as equal important in optimization process, we think that the salient feature points should play more important role in optimization process. Therefore, we proposed a saliency model to predict the saliency map, which can capture both scene semantic and geometric information. Then, we proposed Salient Bundle Adjustment by using the value of saliency map as the weight of the feature points in traditional Bundle Adjustment approach. Exhaustive experiments conducted with the state-of-the-art algorithm in KITTI and EuRoc datasets show that our proposed algorithm outperforms existing algorithms in both indoor and outdoor environments. Finally, we will make our saliency dataset and relevant source code open-source for enabling future research.