No Arabic abstract
Bundle adjustment jointly optimizes camera intrinsics and extrinsics and 3D point triangulation to reconstruct a static scene. The triangulation constraint, however, is invalid for moving points captured in multiple unsynchronized videos and bundle adjustment is not designed to estimate the temporal alignment between cameras. We present a spatiotemporal bundle adjustment framework that jointly optimizes four coupled sub-problems: estimating camera intrinsics and extrinsics, triangulating static 3D points, as well as sub-frame temporal alignment between cameras and computing 3D trajectories of dynamic points. Key to our joint optimization is the careful integration of physics-based motion priors within the reconstruction pipeline, validated on a large motion capture corpus of human subjects. We devise an incremental reconstruction and alignment algorithm to strictly enforce the motion prior during the spatiotemporal bundle adjustment. This algorithm is further made more efficient by a divide and conquer scheme while still maintaining high accuracy. We apply this algorithm to reconstruct 3D motion trajectories of human bodies in dynamic events captured by multiple uncalibrated and unsynchronized video cameras in the wild. To make the reconstruction visually more interpretable, we fit a statistical 3D human body model to the asynchronous video streams.Compared to the baseline, the fitting significantly benefits from the proposed spatiotemporal bundle adjustment procedure. Because the videos are aligned with sub-frame precision, we reconstruct 3D motion at much higher temporal resolution than the input videos.
Current bundle adjustment solvers such as the Levenberg-Marquardt (LM) algorithm are limited by the bottleneck in solving the Reduced Camera System (RCS) whose dimension is proportional to the camera number. When the problem is scaled up, this step is neither efficient in computation nor manageable for a single compute node. In this work, we propose a stochastic bundle adjustment algorithm which seeks to decompose the RCS approximately inside the LM iterations to improve the efficiency and scalability. It first reformulates the quadratic programming problem of an LM iteration based on the clustering of the visibility graph by introducing the equality constraints across clusters. Then, we propose to relax it into a chance constrained problem and solve it through sampled convex program. The relaxation is intended to eliminate the interdependence between clusters embodied by the constraints, so that a large RCS can be decomposed into independent linear sub-problems. Numerical experiments on unordered Internet image sets and sequential SLAM image sets, as well as distributed experiments on large-scale datasets, have demonstrated the high efficiency and scalability of the proposed approach. Codes are released at https://github.com/zlthinker/STBA.
3D face reconstruction from a single image is a task that has garnered increased interest in the Computer Vision community, especially due to its broad use in a number of applications such as realistic 3D avatar creation, pose invariant face recognition and face hallucination. Since the introduction of the 3D Morphable Model in the late 90s, we witnessed an explosion of research aiming at particularly tackling this task. Nevertheless, despite the increasing level of detail in the 3D face reconstructions from single images mainly attributed to deep learning advances, finer and highly deformable components of the face such as the tongue are still absent from all 3D face models in the literature, although being very important for the realness of the 3D avatar representations. In this work we present the first, to the best of our knowledge, end-to-end trainable pipeline that accurately reconstructs the 3D face together with the tongue. Moreover, we make this pipeline robust in in-the-wild images by introducing a novel GAN method tailored for 3D tongue surface generation. Finally, we make publicly available to the community the first diverse tongue dataset, consisting of 1,800 raw scans of 700 individuals varying in gender, age, and ethnicity backgrounds. As we demonstrate in an extensive series of quantitative as well as qualitative experiments, our model proves to be robust and realistically captures the 3D tongue structure, even in adverse in-the-wild conditions.
Aerial vehicles are revolutionizing applications that require capturing the 3D structure of dynamic targets in the wild, such as sports, medicine, and entertainment. The core challenges in developing a motion-capture system that operates in outdoors environments are: (1) 3D inference requires multiple simultaneous viewpoints of the target, (2) occlusion caused by obstacles is frequent when tracking moving targets, and (3) the camera and vehicle state estimation is noisy. We present a real-time aerial system for multi-camera control that can reconstruct human motions in natural environments without the use of special-purpose markers. We develop a multi-robot coordination scheme that maintains the optimal flight formation for target reconstruction quality amongst obstacles. We provide studies evaluating system performance in simulation, and validate real-world performance using two drones while a target performs activities such as jogging and playing soccer. Supplementary video: https://youtu.be/jxt91vx0cns
We present Exemplar Fine-Tuning (EFT), a new method to fit a 3D parametric human model to a single RGB input image cropped around a person with 2D keypoint annotations. While existing parametric human model fitting approaches, such as SMPLify, rely on the view-agnostic human pose priors to enforce the output in a plausible 3D pose space, EFT exploits the pose prior that comes from the specific 2D input observations by leveraging a fully-trained 3D pose regressor. We thoroughly compare our EFT with SMPLify, and demonstrate that EFT produces more reliable and accurate 3D human fitting outputs on the same inputs. Especially, we use our EFT to augment a large scale in-the-wild 2D keypoint datasets, such as COCO and MPII, with plausible and convincing 3D pose fitting outputs. We demonstrate that the pseudo ground-truth 3D pose data by EFT can supervise a strong 3D pose estimator that outperforms the previous state-of-the-art in the standard outdoor benchmark (3DPW), even without using any ground-truth 3D human pose datasets such as Human3.6M. Our code and data are available at https://github.com/facebookresearch/eft.
Predicting 3D human pose from images has seen great recent improvements. Novel approaches that can even predict both pose and shape from a single input image have been introduced, often relying on a parametric model of the human body such as SMPL. While qualitative results for such methods are often shown for images captured in-the-wild, a proper benchmark in such conditions is still missing, as it is cumbersome to obtain ground-truth 3D poses elsewhere than in a motion capture room. This paper presents a pipeline to easily produce and validate such a dataset with accurate ground-truth, with which we benchmark recent 3D human pose estimation methods in-the-wild. We make use of the recently introduced Mannequin Challenge dataset which contains in-the-wild videos of people frozen in action like statues and leverage the fact that people are static and the camera moving to accurately fit the SMPL model on the sequences. A total of 24,428 frames with registered body models are then selected from 567 scenes at almost no cost, using only online RGB videos. We benchmark state-of-the-art SMPL-based human pose estimation methods on this dataset. Our results highlight that challenges remain, in particular for difficult poses or for scenes where the persons are partially truncated or occluded.