No Arabic abstract
To shorten the time required to find effective new drugs, like antivirals, a key parameter to consider is membrane permeability, as a compound intended for an intracellular target with poor permeability will have low efficacy. Here, we present a computational model that considers both drug characteristics and membrane properties for the rapid assessment of drugs permeability through the coronavirus envelope and various cellular membranes. We analyze 79 drugs that are considered as potential candidates for the treatment of SARS-CoV-2 and determine their time of permeation in different organelle membranes grouped by viral baits and mammalian processes. The computational results are correlated with experimental data, present in the literature, on bioavailability of the drugs, showing a negative correlation between fast permeation and most promising drugs. This model represents an important tool capable of evaluating how permeability affects the ability of compounds to reach both intended and unintended intracellular targets in an accurate and rapid way. The method is general and flexible and can be employed for a variety of molecules, from small drugs to nanoparticles, as well to a variety of biological membranes.
Viral kinetics have been extensively studied in the past through the use of spatially homogeneous ordinary differential equations describing the time evolution of the diseased state. However, spatial characteristics such as localized populations of dead cells might adversely affect the spread of infection, similar to the manner in which a counter-fire can stop a forest fire from spreading. In order to investigate the influence of spatial heterogeneities on viral spread, a simple 2-D cellular automaton (CA) model of a viral infection has been developed. In this initial phase of the investigation, the CA model is validated against clinical immunological data for uncomplicated influenza A infections. Our results will be shown and discussed.
Infection by many viruses begins with fusion of viral and cellular lipid membranes, followed by entry of viral contents into the target cell and ultimately, after many biochemical steps, integration of viral DNA into that of the host cell. The early steps of membrane fusion and viral capsid entry are mediated by adsorption to the cell surface, and receptor and coreceptor binding. HIV-1 specifically targets CD4+ helper T-cells of the human immune system and binds to the receptor CD4 and coreceptor CCR5 before fusion is initiated. Previous experiments have been performed using a cell line (293-Affinofile) in which the expression of CD4 and CCR5 concentration were independently controlled. After exposure to HIV-1 of various strains, the resulting infectivity was measured through the fraction of infected cells. To design and evaluate the effectiveness of drug therapies that target the inhibition of the entry processes, an accurate functional relationship between the CD4/CCR5 concentrations and infectivity is desired in order to more quantitatively analyze experimental data. We propose three kinetic models describing the possible mechanistic processes involved in HIV entry and fit their predictions to infectivity measurements, contrasting and comparing different outcomes. Our approach allows interpretation of the clustering of infectivity of different strains of HIV-1 in the space of mechanistic kinetic parameters. Our model fitting also allows inference of nontrivial stoichiometries of receptor and coreceptor binding and provides a framework through which to quantitatively investigate the effectiveness of fusion inhibitors and neutralizing antibodies.
Drug efficacy depends on its capacity to permeate across the cell membrane. We consider the prediction of passive drug-membrane permeability coefficients. Beyond the widely recognized correlation with hydrophobicity, we additionally consider the functional relationship between passive permeation and acidity. To discover easily interpretable equations that explain the data well, we use the recently proposed sure-independence screening and sparsifying operator (SISSO), an artificial-intelligence technique that combines symbolic regression with compressed sensing. Our study is based on a large in silico dataset of 0.4 million small molecules extracted from coarse-grained simulations. We rationalize the equation suggested by SISSO via an analysis of the inhomogeneous solubility-diffusion model in several asymptotic acidity regimes. We further extend our analysis to the dependence on lipid-membrane composition. Lipid-tail unsaturation plays a key role, but surprisingly contributes stepwise rather than proportionally. Our results are in line with previously observed changes in permeability, suggesting the distinction between liquid-disordered (Ld) and liquid-ordered (Lo) permeation. Together, compressed sensing with analytically derived asymptotes establish and validate an accurate, broadly applicable, and interpretable equation for passive permeability across both drug and lipid-tail chemistry.
Axonal growth and guidance at the ventral floor plate is here followed $textit{in vivo}$ in real time at high resolution by light-sheet microscopy along several hundred micrometers of the zebrafish spinal cord. The recordings show the strikingly stereotyped spatio-temporal control that governs midline crossing. Commissural axons are observed crossing the ventral floor plate midline perpendicularly at about 20 microns/h, in a manner dependent on the Robo3 receptor and with a growth rate minimum around the midline, confirming previous observations. At guidance points, commissural axons are seen to decrease their growth rate and growth cones increase in size. Commissural filopodia appear to interact with the nascent neural network, and thereby trigger immediate plastic and reversible sinusoidal-shaped bending movements of neighboring commissural shafts. Ipsilateral axons extend concurrently, but straight and without bends, at three to six times higher growth rates than commissurals, indicating they project their path on a substrate-bound surface rather than relying on diffusible guidance cues. Growing axons appeared to be under stretch, an observation that is of relevance for tension-based models of cortical morphogenesis. The textit{in vivo} observations provide for a discussion of the current distinction between substrate-bound and diffusible guidance cues. The study applies the transparent zebrafish model that provides an experimental model system to explore further the cellular, molecular and physical mechanisms involved during axonal growth, guidance and midline crossing through a combination of $textit{in vitro}$ and $textit{in vivo}$ approaches.
We developed Distilled Graph Attention Policy Networks (DGAPNs), a curiosity-driven reinforcement learning model to generate novel graph-structured chemical representations that optimize user-defined objectives by efficiently navigating a physically constrained domain. The framework is examined on the task of generating molecules that are designed to bind, noncovalently, to functional sites of SARS-CoV-2 proteins. We present a spatial Graph Attention Network (sGAT) that leverages self-attention over both node and edge attributes as well as encoding spatial structure -- this capability is of considerable interest in areas such as molecular and synthetic biology and drug discovery. An attentional policy network is then introduced to learn decision rules for a dynamic, fragment-based chemical environment, and state-of-the-art policy gradient techniques are employed to train the network with enhanced stability. Exploration is efficiently encouraged by incorporating innovation reward bonuses learned and proposed by random network distillation. In experiments, our framework achieved outstanding results compared to state-of-the-art algorithms, while increasing the diversity of proposed molecules and reducing the complexity of paths to chemical synthesis.