No Arabic abstract
Drug efficacy depends on its capacity to permeate across the cell membrane. We consider the prediction of passive drug-membrane permeability coefficients. Beyond the widely recognized correlation with hydrophobicity, we additionally consider the functional relationship between passive permeation and acidity. To discover easily interpretable equations that explain the data well, we use the recently proposed sure-independence screening and sparsifying operator (SISSO), an artificial-intelligence technique that combines symbolic regression with compressed sensing. Our study is based on a large in silico dataset of 0.4 million small molecules extracted from coarse-grained simulations. We rationalize the equation suggested by SISSO via an analysis of the inhomogeneous solubility-diffusion model in several asymptotic acidity regimes. We further extend our analysis to the dependence on lipid-membrane composition. Lipid-tail unsaturation plays a key role, but surprisingly contributes stepwise rather than proportionally. Our results are in line with previously observed changes in permeability, suggesting the distinction between liquid-disordered (Ld) and liquid-ordered (Lo) permeation. Together, compressed sensing with analytically derived asymptotes establish and validate an accurate, broadly applicable, and interpretable equation for passive permeability across both drug and lipid-tail chemistry.
To shorten the time required to find effective new drugs, like antivirals, a key parameter to consider is membrane permeability, as a compound intended for an intracellular target with poor permeability will have low efficacy. Here, we present a computational model that considers both drug characteristics and membrane properties for the rapid assessment of drugs permeability through the coronavirus envelope and various cellular membranes. We analyze 79 drugs that are considered as potential candidates for the treatment of SARS-CoV-2 and determine their time of permeation in different organelle membranes grouped by viral baits and mammalian processes. The computational results are correlated with experimental data, present in the literature, on bioavailability of the drugs, showing a negative correlation between fast permeation and most promising drugs. This model represents an important tool capable of evaluating how permeability affects the ability of compounds to reach both intended and unintended intracellular targets in an accurate and rapid way. The method is general and flexible and can be employed for a variety of molecules, from small drugs to nanoparticles, as well to a variety of biological membranes.
Motivated by the mechanics of dynamin-mediated membrane tube fission we analyse the stability of fluid membrane tubes subjected to shear flow in azimuthal direction. We find a novel helical instability driven by the membrane shear flow which results in a non-equilibrium steady state for the tube fluctuations. This instability has its onset at shear rates that may be physiologically accessible under the action of dynamin and could also be probed using in-vitro experiments on membrane nanotubes, e.g. using magnetic tweezers. We discuss how such an instability may play a role in the mechanism for dynamin-mediated membrane tube fission.
An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.
Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.
Although many equations of state of hard-disk fluids have been proposed, none is capable of reproducing the currently calculated or estimated values of the first eighteen virial coefficients at the same time as giving very good accuracy when compared with computer simulation values for the compressibility factor over the whole fluid range. A new virial-based expression is here proposed which achieves these aims. For that, we use the fact that the currently accepted estimated values for the highest virial coefficients behave linearly with their order, and also that virial coefficients must have a limiting behaviour that permits the closest packing limit in the compressibility factor to be also adequately reproduced.