No Arabic abstract
Axonal growth and guidance at the ventral floor plate is here followed $textit{in vivo}$ in real time at high resolution by light-sheet microscopy along several hundred micrometers of the zebrafish spinal cord. The recordings show the strikingly stereotyped spatio-temporal control that governs midline crossing. Commissural axons are observed crossing the ventral floor plate midline perpendicularly at about 20 microns/h, in a manner dependent on the Robo3 receptor and with a growth rate minimum around the midline, confirming previous observations. At guidance points, commissural axons are seen to decrease their growth rate and growth cones increase in size. Commissural filopodia appear to interact with the nascent neural network, and thereby trigger immediate plastic and reversible sinusoidal-shaped bending movements of neighboring commissural shafts. Ipsilateral axons extend concurrently, but straight and without bends, at three to six times higher growth rates than commissurals, indicating they project their path on a substrate-bound surface rather than relying on diffusible guidance cues. Growing axons appeared to be under stretch, an observation that is of relevance for tension-based models of cortical morphogenesis. The textit{in vivo} observations provide for a discussion of the current distinction between substrate-bound and diffusible guidance cues. The study applies the transparent zebrafish model that provides an experimental model system to explore further the cellular, molecular and physical mechanisms involved during axonal growth, guidance and midline crossing through a combination of $textit{in vitro}$ and $textit{in vivo}$ approaches.
How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. Here we present a new approach using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. The model can go from motor babbling to reaching arbitrary targets in less than 10 minutes. However, because there is no cerebellum the movements are ataxic. As emergent properties, neural populations in motor cortex show directional tuning and oscillatory dynamics, and the spinal cord creates convergent force fields that add linearly. The model is extensible and may eventually lead to complete motor control simulation.
Spike time response curves (STRCs) are used to study the influence of synaptic stimuli on the firing times of a neuron oscillator without the assumption of weak coupling. They allow us to approximate the dynamics of synchronous state in networks of neurons through a discrete map. Linearization about the fixed point of the discrete map can then be used to predict the stability of patterns of synchrony in the network. General theory for taking into account the contribution from higher order STRC terms, in the approximation of the discrete map for coupled neuronal oscillators in synchrony is still lacking. Here we present a general framework to account for higher order STRC corrections in the approximation of discrete map to determine the domain of 1:1 phase locking state in the network of two interacting neurons. We begin by demonstrating that the effect of synaptic stimuli through a shunting synapse to a neuron firing in the gamma frequency band (20-80 Hz) last for three consecutive firing cycles. We then show that the discrete map derived by taking into account the higher order STRC contributions is successfully able predict the domain of synchronous 1:1 phase locked state in a network of two heterogeneous interneurons coupled through a shunting synapse.
Recent years have witnessed an increasing interest in neuron-glia communication. This interest stems from the realization that glia participates in cognitive functions and information processing and is involved in many brain disorders and neurodegenerative diseases. An important process in neuron-glia communications is astrocyte encoding of synaptic information transfer: the modulation of intracellular calcium dynamics in astrocytes in response to synaptic activity. Here, we derive and investigate a concise mathematical model for glutamate-induced astrocytic intracellular Ca2+ dynamics that captures the essential biochemical features of the regulatory pathway of inositol 1,4,5-trisphosphate (IP3). Starting from the well-known two-state Li-Rinzel model for calcium-induced-calcium release, we incorporate the regulation of the IP3 production and phosphorylation. Doing so we extended it to a three-state model (referred as the G-ChI model), that could account for Ca2+ oscillations triggered by endogenous IP3 metabolism as well as by IP3 production by external glutamate signals. Compared to previous similar models, our three-state models include a more realistic description of the IP3 production and degradation pathways, lumping together their essential nonlinearities within a concise formulation. Using bifurcation analysis and time simulations, we demonstrate the existence of new putative dynamical features. The cross-couplings between IP3 and Ca2+ pathways endows the system with self-consistent oscillator properties and favor mixed frequency-amplitude encoding modes over pure amplitude modulation ones. These and additional results of our model are in general agreement with available experimental data and may have important implications on the role of astrocytes in the synaptic transfer of information.
Among the various key networks in the human body, the nervous system occupies central importance. The debilitating effects of spinal cord injuries (SCI) impact a significant number of people throughout the world, and to date, there is no satisfactory method to treat them. In this paper, we review the major treatment techniques for SCI that include promising solutions based on information and communication technology (ICT) and identify the key characteristics of such systems. We then introduce two novel ICT-based treatment approaches for SCI. The first proposal is based on neural interface systems (NIS) with enhanced feedback, where the external machines are interfaced with the brain and the spinal cord such that the brain signals are directly routed to the limbs for movement. The second proposal relates to the design of self-organizing artificial neurons (ANs) that can be used to replace the injured or dead biological neurons. Apart from SCI treatment, the proposed methods may also be utilized as enabling technologies for neural interface applications by acting as bio-cyber interfaces between the nervous system and machines. Furthermore, under the framework of Internet of Bio- Nano Things (IoBNT), experience gained from SCI treatment techniques can be transferred to nano communication research.
Axons are linear processes of nerve cells that can range from a few tens of micrometers up to meters in length. In addition to external cues, the length of an axon is also regulated by unknown internal mechanisms. Molecular motors have been suggested to generate oscillations with an axon length-dependent frequency that could be used to measure an axons extension. Here, we present a mechanism that depends on the spectral decomposition of the oscillatory signal to determine the axon length.