Do you want to publish a course? Click here

Cascade Brillouin scattering as a mechanism for photoluminescence from rough surfaces of noble metals

80   0   0.0 ( 0 )
 Added by Alexander Lisyansky
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In surface-enhanced Raman scattering experiments that use plasmonic nanostructures as substrates, the scattering spectrum contains a broad background usually associated with photoluminescence. This background exists above and below the frequency of the incident wave. The low-frequency part of this background is similar to the scattering spectrum of a plasmon nanoparticle, while the high-frequency part follows the Gibbs distribution. We develop a theory that explains experimentally observed features in both the high- and low-frequency parts of the photoluminescence spectrum from a unified point of view. We show that photoluminescence is attributed to the cascade Brillouin scattering of the incident wave by metal phonons under the plasmon resonance conditions. The theory is in good agreement with our measurements over the entire frequency range of the background.



rate research

Read More

We present first principles calculations of the exchange interactions between magnetic impurities deposited on (001), (110) and (111) surfaces of Cu and Au and analyze them, in particular, in the asymptotic regime. For the (110) and the (111) surfaces we demonstrate that the interaction shows an oscillatory behavior as a function of the distance, R, of the impurities and that the amplitude of the oscillations decays as 1/R^2. Furthermore, the frequency of the oscillations is closely related to the length of the Fermi vector of the surface states existing on these surfaces. Due to the asymmetry of the the surface states dispersion, the frequency of the oscillations becomes also asymmetric on the (110) surfaces, while on the Au(111) surface two distinct frequencies are found in the oscillations as a consequence of the Bychkov-Rashba splitting of the surface states. Remarkably, no long range oscillations of the exchange interaction are observed for the (001) surfaces where the surface states are unoccupied. When burying the impurities beneath the surface layer, oscillations mediated by the bulk states become visible.
This document takes existing derivations of scattering loss from rough surfaces, and makes them more accessible as a tool to derive the total scattering loss from a rough mirror given its true surface profile. It does not contain any new results and is therefore not intended for submission to a scientific journal in the near future. A rough mirror will diffusively reflect part of an incident wave, limiting the effective specular reflectivity of the mirror. This in turn will limit the finesse of an optical resonator using this mirror. We ask this reflectivity depends on the roughness, in the limit of small roughness. The derivation we will use is based off a detailed and well-written book by JA Ogilvy which is almost always out of the library on loan, is out of print, and we cant find any second-hand copies on the internet. Note that nowhere does Ogilvy use the phrase Debye-Waller factor. We outline how this derivation of scattering loss can be used in practice to calculate the scattering loss given a high-precision experimental measure of mirror profile.
We extend our previous shell effect observation in gold nanowires at room temperature under ultra high vacuum to the other two noble metals: silver and copper. Similar to gold, silver nanowires present two series of exceptionally stable diameters related to electronic and atomic shell filling. This observation is in concordance to what was previously found for alkali metal nanowires. Copper however presents only electronic shell filling. Remarkably we find that shell structure survives under ambient conditions for gold and silver.
The ingredients normally required to achieve topological superconductivity (TSC) are Cooper pairing, broken inversion symmetry, and broken time-reversal symmetry. We present a theoretical exploration of the possibility of using ultra-thin films of superconducting metals as a platform for TSC. Because they necessarily break inversion symmetry when prepared on a substrate and have intrinsic Cooper pairing, they can be TSCs when time-reversal symmetry is broken by an external magnetic field. Using microscopic density functional theory calculations we show that for ultrathin Pb and $beta$-Sn superconductors the position of the Fermi level can be tuned to quasi-2D band extrema energies using strain, and that the $g$-factors of these Bloch states can be extremely large enhancing the influence of external magnetic fields.
We consider solid surface scattering of molecules that were subject to strong non-resonant ultrashort laser pulses just before hitting the surface. The pulses modify the rotational states of the molecules, causing their field free alignment, or a rotation with a preferred sense. We show that field-free laser-induced molecular alignment leads to correlations between the scattering angle and the sense of rotation of the scattered molecules. Moreover, by controlling the sense of laser induced unidirectional molecular rotation, one may affect the scattering angle of the molecules. This provides a new means for separation of mixtures of molecules (such as isotopes and nuclear-spin isomers) by laser controlled surface scattering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا