Do you want to publish a course? Click here

Wave scattering from rough surfaces for good mirrors

109   0   0.0 ( 0 )
 Added by Benjamin Walker
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This document takes existing derivations of scattering loss from rough surfaces, and makes them more accessible as a tool to derive the total scattering loss from a rough mirror given its true surface profile. It does not contain any new results and is therefore not intended for submission to a scientific journal in the near future. A rough mirror will diffusively reflect part of an incident wave, limiting the effective specular reflectivity of the mirror. This in turn will limit the finesse of an optical resonator using this mirror. We ask this reflectivity depends on the roughness, in the limit of small roughness. The derivation we will use is based off a detailed and well-written book by JA Ogilvy which is almost always out of the library on loan, is out of print, and we cant find any second-hand copies on the internet. Note that nowhere does Ogilvy use the phrase Debye-Waller factor. We outline how this derivation of scattering loss can be used in practice to calculate the scattering loss given a high-precision experimental measure of mirror profile.



rate research

Read More

We investigate the wave-optical light scattering properties of deformed thin circular films of constant thickness using the discrete-dipole approximation. Effects on the intensity distribution of the scattered light due to different statistical roughness models, model dependant roughness parameters, and uncorrelated random small-scale porosity of the inhomogeneous medium are studied. The usability of discrete-dipole approximation to rough-surface scattering problems is evaluated by considering thin films as computationally feasible rough-surface analogs. The effects due to small-scale inhomogeneity of the scattering medium are compared with the analytic approximation by Maxwell Garnett and the results are found to agree with the approximation.
Light scattering from self-affine homogeneous isotropic random rough surfaces is studied using the ray-optics approximation. Numerical methods are developed to accelerate the first-order scattering simulations from surfaces represented as single-connected single-valued random fields, and to store the results of the simulations into a numerical reflectance model. Horizon mapping and marching methods are developed to accelerate the simulation. Emphasis is given to the geometric shadowing and masking effects as a function of surface roughness, especially, to the azimuthal rough-surface shadowing effect.
78 - Tielei Zhu , Jiaqing Yang 2020
Consider the two-dimensional inverse elastic wave scattering by an infinite rough surface with a Dirichlet boundary condition. A non-interative sampling technique is proposed for detecting the rough surface by taking elastic wave measurements on a bounded line segment above the surface, based on reconstructing a modified near-field equation associated with a special surface, which generalized our pervious work for the Helmholtz equation (SIAM J. IMAGING. SCI. 10(3)(2017), 1579-1602) to the Navier equation. Several numerical examples are carried out to illustrate the effectiveness of the inversion algorithm.
We consider the numerical algorithm for the two-dimensional time-harmonic elastic wave scattering by unbounded rough surfaces with Dirichlet boundary condition. A Nystr{o}m method is proposed for the scattering problem based on the integral equation method. Convergence of the Nystr{o}m method is established with convergence rate depending on the smoothness of the rough surfaces. In doing so, a crucial role is played by analyzing the singularities of the kernels of the relevant boundary integral operators. Numerical experiments are presented to demonstrate the effectiveness of the method.
We consider solid surface scattering of molecules that were subject to strong non-resonant ultrashort laser pulses just before hitting the surface. The pulses modify the rotational states of the molecules, causing their field free alignment, or a rotation with a preferred sense. We show that field-free laser-induced molecular alignment leads to correlations between the scattering angle and the sense of rotation of the scattered molecules. Moreover, by controlling the sense of laser induced unidirectional molecular rotation, one may affect the scattering angle of the molecules. This provides a new means for separation of mixtures of molecules (such as isotopes and nuclear-spin isomers) by laser controlled surface scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا