Do you want to publish a course? Click here

Exchange interaction between magnetic adatoms on surfaces of noble metals

149   0   0.0 ( 0 )
 Added by Laszlo Szunyogh Dr
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present first principles calculations of the exchange interactions between magnetic impurities deposited on (001), (110) and (111) surfaces of Cu and Au and analyze them, in particular, in the asymptotic regime. For the (110) and the (111) surfaces we demonstrate that the interaction shows an oscillatory behavior as a function of the distance, R, of the impurities and that the amplitude of the oscillations decays as 1/R^2. Furthermore, the frequency of the oscillations is closely related to the length of the Fermi vector of the surface states existing on these surfaces. Due to the asymmetry of the the surface states dispersion, the frequency of the oscillations becomes also asymmetric on the (110) surfaces, while on the Au(111) surface two distinct frequencies are found in the oscillations as a consequence of the Bychkov-Rashba splitting of the surface states. Remarkably, no long range oscillations of the exchange interaction are observed for the (001) surfaces where the surface states are unoccupied. When burying the impurities beneath the surface layer, oscillations mediated by the bulk states become visible.



rate research

Read More

We investigate the electronic and magnetic properties of single Fe, Co, and Ni atoms and clusters on monolayer graphene (MLG) on SiC(0001) by means of scanning tunneling microscopy (STM), x-ray absorption spectroscopy, x-ray magnetic circular dichroism (XMCD), and ab initio calculations. STM reveals different adsorption sites for Ni and Co adatoms. XMCD proves Fe and Co adatoms to be paramagnetic and to exhibit an out-of-plane easy axis in agreement with theory. In contrast, we experimentally find a nonmagnetic ground state for Ni monomers while an increasing cluster size leads to sizeable magnetic moments. These observations are well reproduced by our calculations and reveal the importance of hybridization effects and intra-atomic charge transfer for the properties of adatoms and clusters on MLG.
The effective spin exchange coupling between impurities (adatoms) on graphene mediated by conduction electrons is studied as a function of the strength of the potential part of the on-site energy $U$ of the electron-adatom interaction. With increasing $U$, the exchange coupling becomes long-range, determined largely by the impurity levels with energies close to the Dirac points. When adatoms reside on opposite sublattices, their exchange coupling, normally antiferromagnetic, becomes ferromagnetic and resonantly enhanced at a specific distance where an impurity level crosses the Dirac point.
In surface-enhanced Raman scattering experiments that use plasmonic nanostructures as substrates, the scattering spectrum contains a broad background usually associated with photoluminescence. This background exists above and below the frequency of the incident wave. The low-frequency part of this background is similar to the scattering spectrum of a plasmon nanoparticle, while the high-frequency part follows the Gibbs distribution. We develop a theory that explains experimentally observed features in both the high- and low-frequency parts of the photoluminescence spectrum from a unified point of view. We show that photoluminescence is attributed to the cascade Brillouin scattering of the incident wave by metal phonons under the plasmon resonance conditions. The theory is in good agreement with our measurements over the entire frequency range of the background.
Even something as conceptually simple as adsorption of electronegative adatoms on metal surfaces, where repulsive lateral interactions are expected for obvious reasons, can lead to unanticipated behavior. In this context, we explain the origin of surprising lateral interactions between electronegative adatoms observed on some metal surfaces by means of density functional theory calculations of four electronegative atoms (N, O, F, Cl) on 70 surfaces of 44 pristine metals. Four different scenarios for lateral interactions are identified, some of them being unexpected: (i) they are repulsive, which is the typical case and occurs on almost all transition metals. (ii,iii) They are atypical, being either attractive or negligible, which occurs on p-block metals and Mg, and (iv) surface reconstruction stabilizes the low-coverage configuration, preventing atypical lateral interactions. The last case occurs predominantly on s-block metals.
Resonant graphene dopants, such as hydrogen adatoms, experience long-range effective interaction mediated by conduction electrons. As a result of this interaction, when several adatoms are present in the sample, hopping of adatoms between sites belonging to different sublattices involves significant energy changes. Different inelastic mechanisms facilitating such hopping -- coupling to phonons and conduction electrons -- are considered. It is estimated that the diffusion of hydrogen adatoms is rather slow, amounting to roughly one hop to a nearest neighbor per millisecond.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا