Do you want to publish a course? Click here

Coherent control of reactive scattering at low temperatures: Signatures of quantum interference in the differential cross sections for F + H2 and F + HD

494   0   0.0 ( 0 )
 Added by Adrien Devolder
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fundamental entanglement related challenges have prevented quantum interference-based control (i.e. coherent control) of collisional cross sections from being implemented in the laboratory. Here, differential cross sections for reactive scattering at low temperatures are shown to provide a unique opportunity to display such interference-based control by forming coherent superpositions of degenerate rotational states of reactant molecules |jmi with different m. In particular, we identify and quantify a unique signature of coherent control in reactive scattering with applications to F + H2 ! H + HF and HF + D F + HD ! HD + F at 11 K. Control is shown to be extensive.



rate research

Read More

Results for quantum mechanical calculations of the integral cross sections and corresponding thermal rate coefficients for para-/ortho-H2+HD collisions are presented. Because of significant astrophysical interest in regard to the cooling of primodial gas the low temperature limit of para-/ortho-H2+HD is investigated. Sharp resonances in the rotational state-resolved cross sections have been calculated at low energies. These resonances are important and significantly contribute to the corresponding rotational state-resolved thermal rate coefficients, particularly at low temperatures, that is less than $T sim 100$K. Additionally in this work, the cross sections for the elastic HD+HD collision have also been calculated. We obtained quite satisfactory agreement with the results of other theoretical works and experiments.
The origin of fluorine is a longstanding problem in nuclear astrophysics. It is widely recognized that Asymptotic Giant Branch (AGB) stars are among the most important contributors to the Galactic fluorine production. In general, extant nucleosynthesis models overestimate the fluorine production by AGB stars with respect to observations. In this paper we review the relevant nuclear reaction rates involved in the fluorine production/destruction. We perform this analysis on a model with initial mass M=2 M$_odot$ and Z=0.001. We found that the major uncertainties are due to the $^{13}$C($alpha$,n)$^{16}$O, the $^{19}$F($alpha$,p)$^{22}$Ne and the $^{14}$N(p,$gamma$)$^{15}$O reactions. A change of the corresponding reaction rates within the present experimental uncertainties implies surface $^{19}$F variations at the AGB tip lower than 10%. For some $alpha$ capture reactions, however, larger variations in the rates of those processes cannot be excluded. Thus, we explore the effects of the variation of some $alpha$ capture rates well beyond the current published uncertainties. The largest $^{19}$F variations are obtained by varying the $^{15}$N($alpha$,$gamma$)$^{19}$F and the $^{19}$F($alpha$,p)$^{22}$Ne reactions. The analysis of some $alpha$ capture processes assuming a wider uncertainty range determines $^{19}$F abundances in better agreement with recent spectroscopic fluorine measurements at low metallicity. In the framework of the latter scenario the $^{15}$N($alpha$,$gamma$)$^{19}$F and the $^{19}$F($alpha$,p)$^{22}$Ne reactions show the largest effects on fluorine nucleosynthesis. The presence of poorly known low energy resonances make such a scenario, even if unlikely, possible. We plan to directly measure these resonances.
Magnetic control of reactive scattering is realized in an ultracold mixture of $^{23}$Na atoms and $^{23}$Na$^{6}$Li molecules via Feshbach resonances. In most molecular systems, particles form lossy collision complexes at short range with unity probability for chemical reaction or inelastic scattering leading to the so-called universal loss rate. In contrast, Na${+}$NaLi is shown to have ${<}4%$ loss probability at short range when spin polarization suppresses loss. By controlling the phase of the wavefunction via a Feshbach resonance, we modify the loss rate by more than a factor of hundred, from far below the universal limit to far above, demonstrated here for the fist time. The results are explained in analogy with an optical Fabry-Perot interferometer by constructive and destructive interference of reflections at short and long range. Our work demonstrates quantum control of chemistry by magnetic fields with the full dynamic range predicted by our models.
State-to-state differential cross sections (DCSs) for rotationally inelastic scattering of H2O by H2 have been measured at 71.2 meV (574 cm-1) and 44.8 meV (361 cm-1) collision energy using crossed molecular beams combined with velocity map imaging. A molecular beam containing variable compositions of the (J = 0, 1, 2) rotational states of hydrogen collides with a molecular beam of argon seeded with water vapor that is cooled by supersonic expansion to its lowest para or ortho rotational levels (JKaKc= 000 and 101, respectively). Angular speed distributions of fully specified rotationally excited final states are obtained using velocity map imaging. Relative integral cross sections are obtained by integrating the DCSs taken with the same experimental conditions. Experimental state-specific DCSs are compared with predictions from fully quantum scattering calculations on the most complete H2O-H2 potential energy surface. Comparison of relative total cross sections and state-specific DCSs show excellent agreement with theory in almost all details
100 - H. Denz , P. Amaudruz , J.T. Brack 2005
Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا