Do you want to publish a course? Click here

State-to-State Differential and Relative Integral Cross Sections for Rotationally Inelastic Scattering of H2O by Hydrogen

162   0   0.0 ( 0 )
 Added by Laurent Wiesenfeld
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

State-to-state differential cross sections (DCSs) for rotationally inelastic scattering of H2O by H2 have been measured at 71.2 meV (574 cm-1) and 44.8 meV (361 cm-1) collision energy using crossed molecular beams combined with velocity map imaging. A molecular beam containing variable compositions of the (J = 0, 1, 2) rotational states of hydrogen collides with a molecular beam of argon seeded with water vapor that is cooled by supersonic expansion to its lowest para or ortho rotational levels (JKaKc= 000 and 101, respectively). Angular speed distributions of fully specified rotationally excited final states are obtained using velocity map imaging. Relative integral cross sections are obtained by integrating the DCSs taken with the same experimental conditions. Experimental state-specific DCSs are compared with predictions from fully quantum scattering calculations on the most complete H2O-H2 potential energy surface. Comparison of relative total cross sections and state-specific DCSs show excellent agreement with theory in almost all details



rate research

Read More

196 - D. V. Fursa , S. Trajmar , I. Bray 1999
We have used the convergent close-coupling method and a unitarized first-order many-body theory to calculate integral cross sections for elastic scattering and momentum transfer, for excitation of the 5d^2 ^1S, 6s6p^1P_1, 6s7p^1P_1, 6s8p^1P_1, 6s5d^1D_2, 5d^2^1D_2, 6s6d^1D_2, 6p5d^1F_3, 6s4f^1F_3, 6p5d^1D_2, 6s6p^3P_{0,1,2}, 6s5d^3D_{1,2,3}, and 6p5d^3D_2 states, for ionization and for total scattering by electron impact on the ground state of barium at incident electron energies from 1 to 1000 eV. These results and all available experimental data have been combined to produce a recommended set of integral cross sections.
99 - M. Wobisch , T. Wengler 1999
The size of non-perturbative corrections to high E_T jet production in deep-inelastic scattering is reviewed. Based on predictions from fragmentation models, hadronization corrections for different jet definitions are compared and the model dependence as well as the dependence on model parameters is investigated. To test whether these hadronization corrections can be applied to next-to-leading order (NLO) calculations, jet properties and topologies in different parton cascade models are compared to those in NLO. The size of the uncertainties in estimating the hadronization corrections is compared to the uncertainties of perturbative predictions. It is shown that for the inclusive k_perp ordered jet clustering algorithm the hadronization corrections are smallest and their uncertainties are of the same size as the uncertainties of perturbative NLO predictions.
A new relativistic method based on the Dirac equation for calculating fully differential cross sections for ionization in ion-atom collisions is developed. The method is applied to ionization of the atomic hydrogen by antiproton impact, as a non-relativistic benchmark. The fully differential, as well as various doubly and singly differential cross sections for ionization are presented. The role of the interaction between the projectile and the target nucleus is discussed. Several discrepancies in available theoretical predictions are resolved. The relativistic effects are studied for ionization of hydrogenlike xenon ion under the impact of carbon nuclei.
163 - P. Aurenche , M. Fontannaz 2014
We present the complete next-to-leading order calculation of isolated prompt photon production in association with a jet in deep-inelastic scattering. The calculation involves, direct, resolved and fragmentation contributions. It is shown that defining the transverse momenta in the proton virtual-photon frame (CM*), as usually done, or in the laboratory frame (LAB), as done in some experiments, is not equivalent and leads to important differences concerning the perturbative approach. In fact, using the latter frame may preclude, under certain conditions, the calculation of the next-to-leading order correction to the important resolved component. A comparaison with the latest ZEUS data is performed and good agreement is found in the perturbatively stable regions.
Results for quantum mechanical calculations of the integral cross sections and corresponding thermal rate coefficients for para-/ortho-H2+HD collisions are presented. Because of significant astrophysical interest in regard to the cooling of primodial gas the low temperature limit of para-/ortho-H2+HD is investigated. Sharp resonances in the rotational state-resolved cross sections have been calculated at low energies. These resonances are important and significantly contribute to the corresponding rotational state-resolved thermal rate coefficients, particularly at low temperatures, that is less than $T sim 100$K. Additionally in this work, the cross sections for the elastic HD+HD collision have also been calculated. We obtained quite satisfactory agreement with the results of other theoretical works and experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا