Do you want to publish a course? Click here

State-resolved rotational cross sections and thermal rate coefficients for ortho-/para-H2+HD at low temperatures and HD+HD elastic scattering

125   0   0.0 ( 0 )
 Added by Renat Sultanov
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Results for quantum mechanical calculations of the integral cross sections and corresponding thermal rate coefficients for para-/ortho-H2+HD collisions are presented. Because of significant astrophysical interest in regard to the cooling of primodial gas the low temperature limit of para-/ortho-H2+HD is investigated. Sharp resonances in the rotational state-resolved cross sections have been calculated at low energies. These resonances are important and significantly contribute to the corresponding rotational state-resolved thermal rate coefficients, particularly at low temperatures, that is less than $T sim 100$K. Additionally in this work, the cross sections for the elastic HD+HD collision have also been calculated. We obtained quite satisfactory agreement with the results of other theoretical works and experiments.



rate research

Read More

Fundamental entanglement related challenges have prevented quantum interference-based control (i.e. coherent control) of collisional cross sections from being implemented in the laboratory. Here, differential cross sections for reactive scattering at low temperatures are shown to provide a unique opportunity to display such interference-based control by forming coherent superpositions of degenerate rotational states of reactant molecules |jmi with different m. In particular, we identify and quantify a unique signature of coherent control in reactive scattering with applications to F + H2 ! H + HF and HF + D F + HD ! HD + F at 11 K. Control is shown to be extensive.
We investigate the leading systematic effects in ro-vibrational spectroscopy of the molecular hydrogen ions H2+ and HD+, in order to assess their potential for the realization of optical clocks that would be sensitive to possible variations of the proton-to-electron mass ratio. Both two-photon (2E1) and quadrupole (E2) transitions are considered. In view of the weakness of these transitions, most attention is devoted to the light shift induced by the probe laser, which we express as a function of the transition amplitude, differential dynamic polarizability and clock interrogation times. Transition amplitudes and dynamic polarizabilites including the effect of hyperfine structure are then calculated in a full three-body approach to get a precise evaluation of the light shift. Together with the quadrupole and Zeeman shifts that are obtained from previous works, these results provide a realistic estimate of the achievable accuracy. We show that the lightshift is the main limiting factor in the case of two-photon transitions, both in H2+ and HD+, leading to expected accuracy levels close to 5 10-16 in the best cases. Quadrupole transitions have even more promising properties and may allow reaching or going beyond 10-16.
We present FUSE observations of the extincted O9.5 star, HD 34078. The 19 first levels of H2 are detected (i.e. from J=0 to v=1, J=5) as well as HD in its two first levels. The excitation of H2 up to J=7 can be explained using a combination of Photon Dominated Region (PDR) and MHD shock models. However, understanding the large amount of H2 found in higher excitation states seems to require more energetic processes that have yet to be identified.
Encapsulation of a single water molecule in fullerene-C60 via chemical surgery provides a unique opportunity to study the distinct rotational dynamics of the water spin isomers at cryogenic temperatures. Here, we employ single-cycle terahertz (THz) pulses to coherently excite the low-frequency rotational motion of ortho- and para-water, encapsulated in fullerene-C60. The THz pulse slightly orients the water electric dipole moments along the field polarization leading to the subsequent emission of electromagnetic waves, which we resolve via the field-free electro-optic sampling technique. At temperatures above ~100 K, the rotation of water in its cage is overdamped and no emission is resolved. At lower temperatures, the water rotation gains a long coherence decay time, allowing observation of the coherent emission for 10-15 ps after the initial excitation. We observe the real-time change of the emission pattern after cooling to 4 K, corresponding to the conversion of a mixture of ortho-water to para-water over the course of 10 hours.
418 - W. F. Thi , S. Hocuk , I. Kamp 2018
Molecular hydrogen (H2) is the main constituent of the gas in the planet-forming disks that surround many PMS stars. H2 can be incorporated in the atmosphere of the giant planets. HD has been detected in a few disks and can be considered the most reliable tracer of H2. We wish to form H2 and HD efficiently for the varied conditions encountered in protoplanetary disks: the densities vary from 1E4 to 1E16 cm^-3; the dust temperatures range from 5 to 1500 K, the gas temperatures go from 5 to a few 1000 Kelvin, and the ultraviolet field can be 1E7 stronger than the standard interstellar field. We implemented a comprehensive model of H2 and HD formation on cold and warm grain surfaces and via hydrogenated PAHs in the physico-chemical code ProDiMo. The H2 and HD formation can proceed via the Langmuir-Hinshelwood and Eley-Ridel mechanisms for physisorbed or chemisorbed H (D) atoms. H2 and HD also form by H (D) abstraction from hydrogenated neutral and ionised PAHs and via gas phase reactions. H2 and HD are formed efficiently on dust grain surfaces from 10 to 700 K. All the deuterium is converted into HD in UV shielded regions as soon as H2 is formed by gas-phase D abstraction reactions. The detailed model compares well with standard analytical prescriptions for H2 (HD) formation. At low temperatures, H2 is formed from the encounter of two physisorbed atoms. HD molecules form on the grain surfaces and in the gas-phase. At temperatures greater than 20 K, the meeting between a weakly bound H- (or D-) atom or a gas-phase H (D) atom and a chemisorbed atom is the most efficient H2 formation route. H2 formation through hydrogenated PAHs alone is efficient above 80 K. The contribution of hydrogenated PAHs to the overall H2 and HD formation is relatively low if chemisorption on silicate is taken into account and if a small hydrogen abstraction cross-section is used.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا