Do you want to publish a course? Click here

pi+- p differential cross sections at low energies

101   0   0.0 ( 0 )
 Added by Holger Denz
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.



rate research

Read More

60 - J.K. Ahn , S. Aoki , K.S. Chung 2005
In this paper we report cross-section measurements for $Xi^-p$ elastic and inelastic scatterings at low energy using a scintillating fiber active target. Upper limit on the total cross-section for the elastic scattering was found to be 24 mb at 90% confidence level, and the total cross section for the $Xi^-ptoLambdaLambda$ reaction was found to be $4.3^{+6.3}_{-2.7}$ mb. We compare the results with currently competing theoretical estimates.
Measurements of dielectron production in p+p and p+d collisions with beam kinetic energies from 1.04 to 4.88 GeV are presented. The differential cross section is presented as a function of invariant pair mass, transverse momentum, and rapidity. The shapes of the mass spectra and their evolution with beam energy provide information about the relative importance of the various dielectron production mechanisms in this energy regime. The p+d to p+p ratio of the dielectron yield is also presented as a function of invariant pair mass, transverse momentum, and rapidity. The shapes of the transverse momentum and rapidity spectra from the p+d and p+p systems are found to be similar to one another for each of the beam energies studied. The beam energy dependence of the integrated cross sections is also presented.
The neutron total cross sections $sigma_{tot}$ of $^{16,18}$O, $^{58,64}$Ni, $^{103}$Rh, and $^{112,124}$Sn have been measured at the Los Alamos Neutron Science Center (LANSCE) from low to intermediate energies (3 $leq E_{lab} leq$ 450 MeV) by leveraging waveform-digitizer technology. The $sigma_{tot}$ relative differences between isotopes are presented, revealing additional information about the isovector components needed for an accurate optical-model description away from stability. Digitizer-enabled $sigma_{tot}$-measurement techniques are discussed and a series of uncertainty-quantified dispersive optical model (DOM) analyses using these new data is presented, validating the use of the DOM for modeling light systems ($^{16,18}$O) and systems with open neutron shells ($^{58,64}$Ni and $^{112,124}$Sn). The valence-nucleon spectroscopic factors extracted for each isotope reaffirm the usefulness of high-energy proton reaction cross sections for characterizing depletion from the mean-field expectation.
102 - G.G. Kiss , Gy. Gyurky , Z. Elekes 2007
The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerators of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.
216 - A. Ornelas , P. Mohr , Gy. Gyurky 2016
Background: alpha-nucleus potentials play an essential role for the calculation of alpha-induced reaction cross sections at low energies in the statistical model... Purpose: The present work studies the total reaction cross section sigma_reac of alpha-induced reactions at low energies which can be determined from the elastic scattering angular distribution or from the sum over the cross sections of all open non-elastic channels. Method: Elastic and inelastic 64Zn(a,a)64Zn angular distributions were measured at two energies around the Coulomb barrier at 12.1 MeV and 16.1 MeV. Reaction cross sections of the (a,g), (a,n), and (a,p) reactions were measured at the same energies using the activation technique. The contributions of missing non-elastic channels were estimated from statistical model calculations. Results: The total reaction cross sections from elastic scattering and from the sum of the cross sections over all open non-elastic channels agree well within the uncertainties. This finding confirms the consistency of the experimental data. At the higher energy of 16.1 MeV, the predicted significant contribution of compound-inelastic scattering to the total reaction cross section is confirmed experimentally. As a by-product it is found that most recent global alpha-nucleus potentials are able to describe the reaction cross sections for 64Zn around the Coulomb barrier. Conclusions: Total reaction cross sections of alpha-induced reactions can be well determined from elastic scattering angular distributions. The present study proves experimentally that the total cross section from elastic scattering is identical to the sum of non-elastic reaction cross sections. Thus, the statistical model can reliably be used to distribute the total reaction cross section among the different open channels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا