No Arabic abstract
Deep language models such as BERT pre-trained on large corpus have given a huge performance boost to the state-of-the-art information retrieval ranking systems. Knowledge embedded in such models allows them to pick up complex matching signals between passages and queries. However, the high computation cost during inference limits their deployment in real-world search scenarios. In this paper, we study if and how the knowledge for search within BERT can be transferred to a smaller ranker through distillation. Our experiments demonstrate that it is crucial to use a proper distillation procedure, which produces up to nine times speedup while preserving the state-of-the-art performance.
Transformer-based pre-training models like BERT have achieved remarkable performance in many natural language processing tasks.However, these models are both computation and memory expensive, hindering their deployment to resource-constrained devices. In this work, we propose TernaryBERT, which ternarizes the weights in a fine-tuned BERT model. Specifically, we use both approximation-based and loss-aware ternarization methods and empirically investigate the ternarization granularity of different parts of BERT. Moreover, to reduce the accuracy degradation caused by the lower capacity of low bits, we leverage the knowledge distillation technique in the training process. Experiments on the GLUE benchmark and SQuAD show that our proposed TernaryBERT outperforms the other BERT quantization methods, and even achieves comparable performance as the full-precision model while being 14.9x smaller.
The performance of state-of-the-art neural rankers can deteriorate substantially when exposed to noisy inputs or applied to a new domain. In this paper, we present a novel method for fine-tuning neural rankers that can significantly improve their robustness to out-of-domain data and query perturbations. Specifically, a contrastive loss that compares data points in the representation space is combined with the standard ranking loss during fine-tuning. We use relevance labels to denote similar/dissimilar pairs, which allows the model to learn the underlying matching semantics across different query-document pairs and leads to improved robustness. In experiments with four passage ranking datasets, the proposed contrastive fine-tuning method obtains improvements on robustness to query reformulations, noise perturbations, and zero-shot transfer for both BERT and BART based rankers. Additionally, our experiments show that contrastive fine-tuning outperforms data augmentation for robustifying neural rankers.
Features play an important role in the prediction tasks of e-commerce recommendations. To guarantee the consistency of off-line training and on-line serving, we usually utilize the same features that are both available. However, the consistency in turn neglects some discriminative features. For example, when estimating the conversion rate (CVR), i.e., the probability that a user would purchase the item if she clicked it, features like dwell time on the item detailed page are informative. However, CVR prediction should be conducted for on-line ranking before the click happens. Thus we cannot get such post-event features during serving. We define the features that are discriminative but only available during training as the privileged features. Inspired by the distillation techniques which bridge the gap between training and inference, in this work, we propose privileged features distillation (PFD). We train two models, i.e., a student model that is the same as the original one and a teacher model that additionally utilizes the privileged features. Knowledge distilled from the more accurate teacher is transferred to the student to improve its accuracy. During serving, only the student part is extracted and it relies on no privileged features. We conduct experiments on two fundamental prediction tasks at Taobao recommendations, i.e., click-through rate (CTR) at coarse-grained ranking and CVR at fine-grained ranking. By distilling the interacted features that are prohibited during serving for CTR and the post-event features for CVR, we achieve significant improvements over their strong baselines. During the on-line A/B tests, the click metric is improved by +5.0% in the CTR task. And the conversion metric is improved by +2.3% in the CVR task. Besides, by addressing several issues of training PFD, we obtain comparable training speed as the baselines without any distillation.
The cold start problem in recommender systems is a long-standing challenge, which requires recommending to new users (items) based on attributes without any historical interaction records. In these recommendation systems, warm users (items) have privileged collaborative signals of interaction records compared to cold start users (items), and these Collaborative Filtering (CF) signals are shown to have competing performance for recommendation. Many researchers proposed to learn the correlation between collaborative signal embedding space and the attribute embedding space to improve the cold start recommendation, in which user and item categorical attributes are available in many online platforms. However, the cold start recommendation is still limited by two embedding spaces modeling and simple assumptions of space transformation. As user-item interaction behaviors and user (item) attributes naturally form a heterogeneous graph structure, in this paper, we propose a privileged graph distillation model~(PGD). The teacher model is composed of a heterogeneous graph structure for warm users and items with privileged CF links. The student model is composed of an entity-attribute graph without CF links. Specifically, the teacher model can learn better embeddings of each entity by injecting complex higher-order relationships from the constructed heterogeneous graph. The student model can learn the distilled output with privileged CF embeddings from the teacher embeddings. Our proposed model is generally applicable to different cold start scenarios with new user, new item, or new user-new item. Finally, extensive experimental results on the real-world datasets clearly show the effectiveness of our proposed model on different types of cold start problems, with average $6.6%, 5.6%, $ and $17.1%$ improvement over state-of-the-art baselines on three datasets, respectively.
We study the use of BERT for non-factoid question-answering, focusing on the passage re-ranking task under varying passage lengths. To this end, we explore the fine-tuning of BERT in different learning-to-rank setups, comprising both point-wise and pair-wise methods, resulting in substantial improvements over the state-of-the-art. We then analyze the effectiveness of BERT for different passage lengths and suggest how to cope with large passages.