Do you want to publish a course? Click here

A Study of BERT for Non-Factoid Question-Answering under Passage Length Constraints

194   0   0.0 ( 0 )
 Added by Yosi Mass
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We study the use of BERT for non-factoid question-answering, focusing on the passage re-ranking task under varying passage lengths. To this end, we explore the fine-tuning of BERT in different learning-to-rank setups, comprising both point-wise and pair-wise methods, resulting in substantial improvements over the state-of-the-art. We then analyze the effectiveness of BERT for different passage lengths and suggest how to cope with large passages.



rate research

Read More

90 - Chen Qu , Hamed Zamani , Liu Yang 2021
In this work, we address multi-modal information needs that contain text questions and images by focusing on passage retrieval for outside-knowledge visual question answering. This task requires access to outside knowledge, which in our case we define to be a large unstructured passage collection. We first conduct sparse retrieval with BM25 and study expanding the question with object names and image captions. We verify that visual clues play an important role and captions tend to be more informative than object names in sparse retrieval. We then construct a dual-encoder dense retriever, with the query encoder being LXMERT, a multi-modal pre-trained transformer. We further show that dense retrieval significantly outperforms sparse retrieval that uses object expansion. Moreover, dense retrieval matches the performance of sparse retrieval that leverages human-generated captions.
Conversational passage retrieval relies on question rewriting to modify the original question so that it no longer depends on the conversation history. Several methods for question rewriting have recently been proposed, but they were compared under different retrieval pipelines. We bridge this gap by thoroughly evaluating those question rewriting methods on the TREC CAsT 2019 and 2020 datasets under the same retrieval pipeline. We analyze the effect of different types of question rewriting methods on retrieval performance and show that by combining question rewriting methods of different types we can achieve state-of-the-art performance on both datasets.
We analyse the performance of passage retrieval models in the presence of complex (multi-hop) questions to provide a better understanding of how retrieval systems behave when multiple hops of reasoning are needed. In simple open-domain question answering (QA), dense passage retrieval has become one of the standard approaches for retrieving the relevant passages to infer an answer. Recently, dense passage retrieval also achieved state-of-the-art results in multi-hop QA, where aggregating information from multiple documents and reasoning over them is required. However, so far, the dense retrieval models are not evaluated properly concerning the multi-hop nature of the problem: models are typically evaluated by the end result of the retrieval pipeline, which leaves unclear where their success lies. In this work, we provide an in-depth evaluation of such models not only unveiling the reasons behind their success but also their limitations. Moreover, we introduce a hybrid (lexical and dense) retrieval approach that is highly competitive with the state-of-the-art dense retrieval model, while requiring substantially less computational resources. Furthermore, we also perform qualitative analysis to better understand the challenges behind passage retrieval for multi-hop QA.
The question answering system can answer questions from various fields and forms with deep neural networks, but it still lacks effective ways when facing multiple evidences. We introduce a new model called SRQA, which means Synthetic Reader for Factoid Question Answering. This model enhances the question answering system in the multi-document scenario from three aspects: model structure, optimization goal, and training method, corresponding to Multilayer Attention (MA), Cross Evidence (CE), and Adversarial Training (AT) respectively. First, we propose a multilayer attention network to obtain a better representation of the evidences. The multilayer attention mechanism conducts interaction between the question and the passage within each layer, making the token representation of evidences in each layer takes the requirement of the question into account. Second, we design a cross evidence strategy to choose the answer span within more evidences. We improve the optimization goal, considering all the answers locations in multiple evidences as training targets, which leads the model to reason among multiple evidences. Third, adversarial training is employed to high-level variables besides the word embedding in our model. A new normalization method is also proposed for adversarial perturbations so that we can jointly add perturbations to several target variables. As an effective regularization method, adversarial training enhances the models ability to process noisy data. Combining these three strategies, we enhance the contextual representation and locating ability of our model, which could synthetically extract the answer span from several evidences. We perform SRQA on the WebQA dataset, and experiments show that our model outperforms the state-of-the-art models (the best fuzzy score of our model is up to 78.56%, with an improvement of about 2%).
We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا