No Arabic abstract
The cold start problem in recommender systems is a long-standing challenge, which requires recommending to new users (items) based on attributes without any historical interaction records. In these recommendation systems, warm users (items) have privileged collaborative signals of interaction records compared to cold start users (items), and these Collaborative Filtering (CF) signals are shown to have competing performance for recommendation. Many researchers proposed to learn the correlation between collaborative signal embedding space and the attribute embedding space to improve the cold start recommendation, in which user and item categorical attributes are available in many online platforms. However, the cold start recommendation is still limited by two embedding spaces modeling and simple assumptions of space transformation. As user-item interaction behaviors and user (item) attributes naturally form a heterogeneous graph structure, in this paper, we propose a privileged graph distillation model~(PGD). The teacher model is composed of a heterogeneous graph structure for warm users and items with privileged CF links. The student model is composed of an entity-attribute graph without CF links. Specifically, the teacher model can learn better embeddings of each entity by injecting complex higher-order relationships from the constructed heterogeneous graph. The student model can learn the distilled output with privileged CF embeddings from the teacher embeddings. Our proposed model is generally applicable to different cold start scenarios with new user, new item, or new user-new item. Finally, extensive experimental results on the real-world datasets clearly show the effectiveness of our proposed model on different types of cold start problems, with average $6.6%, 5.6%, $ and $17.1%$ improvement over state-of-the-art baselines on three datasets, respectively.
Matrix completion is a classic problem underlying recommender systems. It is traditionally tackled with matrix factorization. Recently, deep learning based methods, especially graph neural networks, have made impressive progress on this problem. Despite their effectiveness, existing methods focus on modeling the user-item interaction graph. The inherent drawback of such methods is that their performance is bound to the density of the interactions, which is however usually of high sparsity. More importantly, for a cold start user/item that does not have any interactions, such methods are unable to learn the preference embedding of the user/item since there is no link to this user/item in the graph. In this work, we develop a novel framework Attribute Graph Neural Networks (AGNN) by exploiting the attribute graph rather than the commonly used interaction graph. This leads to the capability of learning embeddings for cold start users/items. Our AGNN can produce the preference embedding for a cold user/item by learning on the distribution of attributes with an extended variational auto-encoder structure. Moreover, we propose a new graph neural network variant, i.e., gated-GNN, to effectively aggregate various attributes of different modalities in a neighborhood. Empirical results on two real-world datasets demonstrate that our model yields significant improvements for cold start recommendations and outperforms or matches state-of-the-arts performance in the warm start scenario.
The item cold-start problem seriously limits the recommendation performance of Collaborative Filtering (CF) methods when new items have either none or very little interactions. To solve this issue, many modern Internet applications propose to predict a new items interaction from the possessing contents. However, it is difficult to design and learn a map between the items interaction history and the corresponding contents. In this paper, we apply the Wasserstein distance to address the item cold-start problem. Given item content information, we can calculate the similarity between the interacted items and cold-start ones, so that a users preference on cold-start items can be inferred by minimizing the Wasserstein distance between the distributions over these two types of items. We further adopt the idea of CF and propose Wasserstein CF (WCF) to improve the recommendation performance on cold-start items. Experimental results demonstrate the superiority of WCF over state-of-the-art approaches.
When a new user just signs up on a website, we usually have no information about him/her, i.e. no interaction with items, no user profile and no social links with other users. Under such circumstances, we still expect our recommender systems could attract the users at the first time so that the users decide to stay on the website and become active users. This problem falls into new user cold-start category and it is crucial to the development and even survival of a company. Existing works on user cold-start recommendation either require additional user efforts, e.g. setting up an interview process, or make use of side information [10] such as user demographics, locations, social relations, etc. However, users may not be willing to take the interview and side information on cold-start users is usually not available. Therefore, we consider a pure cold-start scenario where neither interaction nor side information is available and no user effort is required. Studying this setting is also important for the initialization of other cold-start solutions, such as initializing the first few questions of an interview.
A common challenge for most current recommender systems is the cold-start problem. Due to the lack of user-item interactions, the fine-tuned recommender systems are unable to handle situations with new users or new items. Recently, some works introduce the meta-optimization idea into the recommendation scenarios, i.e. predicting the user preference by only a few of past interacted items. The core idea is learning a global sharing initialization parameter for all users and then learning the local parameters for each user separately. However, most meta-learning based recommendation approaches adopt model-agnostic meta-learning for parameter initialization, where the global sharing parameter may lead the model into local optima for some users. In this paper, we design two memory matrices that can store task-specific memories and feature-specific memories. Specifically, the feature-specific memories are used to guide the model with personalized parameter initialization, while the task-specific memories are used to guide the model fast predicting the user preference. And we adopt a meta-optimization approach for optimizing the proposed method. We test the model on two widely used recommendation datasets and consider four cold-start situations. The experimental results show the effectiveness of the proposed methods.
Recommending cold-start items is a long-standing and fundamental challenge in recommender systems. Without any historical interaction on cold-start items, CF scheme fails to use collaborative signals to infer user preference on these items. To solve this problem, extensive studies have been conducted to incorporate side information into the CF scheme. Specifically, they employ modern neural network techniques (e.g., dropout, consistency constraint) to discover and exploit the coalition effect of content features and collaborative representations. However, we argue that these works less explore the mutual dependencies between content features and collaborative representations and lack sufficient theoretical supports, thus resulting in unsatisfactory performance. In this work, we reformulate the cold-start item representation learning from an information-theoretic standpoint. It aims to maximize the mutual dependencies between item content and collaborative signals. Specifically, the representation learning is theoretically lower-bounded by the integration of two terms: mutual information between collaborative embeddings of users and items, and mutual information between collaborative embeddings and feature representations of items. To model such a learning process, we devise a new objective function founded upon contrastive learning and develop a simple yet effective Contrastive Learning-based Cold-start Recommendation framework(CLCRec). In particular, CLCRec consists of three components: contrastive pair organization, contrastive embedding, and contrastive optimization modules. It allows us to preserve collaborative signals in the content representations for both warm and cold-start items. Through extensive experiments on four publicly accessible datasets, we observe that CLCRec achieves significant improvements over state-of-the-art approaches in both warm- and cold-start scenarios.