Do you want to publish a course? Click here

Contrastive Fine-tuning Improves Robustness for Neural Rankers

83   0   0.0 ( 0 )
 Added by Xiaofei Ma
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The performance of state-of-the-art neural rankers can deteriorate substantially when exposed to noisy inputs or applied to a new domain. In this paper, we present a novel method for fine-tuning neural rankers that can significantly improve their robustness to out-of-domain data and query perturbations. Specifically, a contrastive loss that compares data points in the representation space is combined with the standard ranking loss during fine-tuning. We use relevance labels to denote similar/dissimilar pairs, which allows the model to learn the underlying matching semantics across different query-document pairs and leads to improved robustness. In experiments with four passage ranking datasets, the proposed contrastive fine-tuning method obtains improvements on robustness to query reformulations, noise perturbations, and zero-shot transfer for both BERT and BART based rankers. Additionally, our experiments show that contrastive fine-tuning outperforms data augmentation for robustifying neural rankers.

rate research

Read More

85 - Lin Bo , Liang Pang , Gang Wang 2021
Recently, pre-trained language models such as BERT have been applied to document ranking for information retrieval, which first pre-train a general language model on an unlabeled large corpus and then conduct ranking-specific fine-tuning on expert-labeled relevance datasets. Ideally, an IR system would model relevance from a user-system dualism: the users view and the systems view. Users view judges the relevance based on the activities of real users while the systems view focuses on the relevance signals from the system side, e.g., from the experts or algorithms, etc. Inspired by the user-system relevance views and the success of pre-trained language models, in this paper we propose a novel ranking framework called Pre-Rank that takes both users view and systems view into consideration, under the pre-training and fine-tuning paradigm. Specifically, to model the users view of relevance, Pre-Rank pre-trains the initial query-document representations based on large-scale user activities data such as the click log. To model the systems view of relevance, Pre-Rank further fine-tunes the model on expert-labeled relevance data. More importantly, the pre-trained representations, are fine-tuned together with handcrafted learning-to-rank features under a wide and deep network architecture. In this way, Pre-Rank can model the relevance by incorporating the relevant knowledge and signals from both real search users and the IR experts. To verify the effectiveness of Pre-Rank, we showed two implementations by using BERT and SetRank as the underlying ranking model, respectively. Experimental results base on three publicly available benchmarks showed that in both of the implementations, Pre-Rank can respectively outperform the underlying ranking models and achieved state-of-the-art performances.
Deep language models such as BERT pre-trained on large corpus have given a huge performance boost to the state-of-the-art information retrieval ranking systems. Knowledge embedded in such models allows them to pick up complex matching signals between passages and queries. However, the high computation cost during inference limits their deployment in real-world search scenarios. In this paper, we study if and how the knowledge for search within BERT can be transferred to a smaller ranker through distillation. Our experiments demonstrate that it is crucial to use a proper distillation procedure, which produces up to nine times speedup while preserving the state-of-the-art performance.
153 - Lei Chen , Fajie Yuan , Jiaxi Yang 2021
Making accurate recommendations for cold-start users has been a longstanding and critical challenge for recommender systems (RS). Cross-domain recommendations (CDR) offer a solution to tackle such a cold-start problem when there is no sufficient data for the users who have rarely used the system. An effective approach in CDR is to leverage the knowledge (e.g., user representations) learned from a related but different domain and transfer it to the target domain. Fine-tuning works as an effective transfer learning technique for this objective, which adapts the parameters of a pre-trained model from the source domain to the target domain. However, current methods are mainly based on the global fine-tuning strategy: the decision of which layers of the pre-trained model to freeze or fine-tune is taken for all users in the target domain. In this paper, we argue that users in RS are personalized and should have their own fine-tuning policies for better preference transfer learning. As such, we propose a novel User-specific Adaptive Fine-tuning method (UAF), selecting which layers of the pre-trained network to fine-tune, on a per-user basis. Specifically, we devise a policy network with three alternative strategies to automatically decide which layers to be fine-tuned and which layers to have their parameters frozen for each user. Extensive experiments show that the proposed UAF exhibits significantly better and more robust performance for user cold-start recommendation.
Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask approach based on a recurrent neural network that benefits by jointly learning them. Our study demonstrates the potential of multitask models on this type of problems and improves the state-of-the-art results in the fine-grained sentiment classification problem.
Technology-assisted review (TAR) refers to iterative active learning workflows for document review in high recall retrieval (HRR) tasks. TAR research and most commercial TAR software have applied linear models such as logistic regression or support vector machines to lexical features. Transformer-based models with supervised tuning have been found to improve effectiveness on many text classification tasks, suggesting their use in TAR. We indeed find that the pre-trained BERT model reduces review volume by 30% in TAR workflows simulated on the RCV1-v2 newswire collection. In contrast, we find that linear models outperform BERT for simulated legal discovery topics on the Jeb Bush e-mail collection. This suggests the match between transformer pre-training corpora and the task domain is more important than generally appreciated. Additionally, we show that just-right language model fine-tuning on the task collection before starting active learning is critical. Both too little or too much fine-tuning results in performance worse than that of linear models, even for RCV1-v2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا