Do you want to publish a course? Click here

Capping and gate control of anomalous Hall effect and hump structure in ultra-thin SrRuO$_3$ films

124   0   0.0 ( 0 )
 Added by Donghan Kim
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ferromagnetism and exotic topological structures in SrRuO$_3$ (SRO) induce sign-changing anomalous Hall effect (AHE). Recently, hump structures have been reported in the Hall resistivity of SRO thin films, especially in the ultra-thin regime. We investigate the AHE and hump structure in the Hall resistivity of SRO ultra-thin films with an SrTiO$_3$ (STO) capping layer and ionic liquid gating. STO capping results in sign changes in the AHE and modulation of the hump structure. In particular, the hump structure in the Hall resistivity is strongly modulated and even vanishes in STO-capped 4 unit cell (uc) films. In addition, the conductivity of STO-capped SRO ultra-thin films is greatly enhanced with restored ferromagnetism. We also performed ionic liquid gating to modulate the electric field at SRO/STO interface. Drastic changes in the AHE and hump structure are observed with different gate voltages. Our study shows that the hump structure as well as the AHE can be controlled by tuning inversion symmetry and the electric field at the interface.



rate research

Read More

A controversy arose over the interpretation of the recently observed hump features in Hall resistivity $rho_{xy}$ from ultra-thin SrRuO$_3$ (SRO) film; it was initially interpreted to be due to topological Hall effect but was later proposed to be from existence of regions with different anomalous Hall effect (AHE). In order to settle down the issue, we performed Hall effect as well as magneto-optic Kerr-effect measurements on 4 unit cell SRO films grown on SrTiO$_3$ (001) substrates. Clear hump features are observed in the measured $rho_{xy}$, whereas neither hump feature nor double hysteresis loop is seen in the Kerr rotation which should be proportional to the magnetization. In addition, magnetization measurement by superconducting quantum interference device shows no sign of multiple coercive fields. These results show that inhomogeneous AHE alone cannot explain the observed hump behavior in $rho_{xy}$ data from our SRO ultra-thin films. We found that emergence of the hump structure in $rho_{xy}$ is closely related to the growth condition, high quality films having clear sign of humps.
We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component behavior. One component of the MOKE signal tracks the average magnetization, while the second anomalous component bears a resemblance to anomalies in the Hall resistivity which have been previously reported in skyrmion materials. We present a theory showing that the MOKE anomalies arise from the non-monotonic relation between the Kerr angle and the magnetization, when we average over magnetic domains which proliferate near the coercive field. Our results suggest that inhomogeneous domain formation, rather than skyrmions, may provide a common origin for the observed MOKE and Hall resistivity anomalies.
Motivated by the recently observed topological Hall effect in ultra-thin films of SrRuO$_3$ (SRO) grown on SrTiO$_3$ (STO) [001] substrate, we investigate the magnetic ground state and anomalous Hall response of the SRO ultra-thin films by virtue of spin density functional theory (DFT). Our findings reveal that in the monolayer limit of an SRO film, a large energy splitting of Ru-$t_{2g}$ states stabilizes an anti-ferromagnetic (AFM) insulating magnetic ground state. For the AFM ground state, our Berry curvature calculations predict a large anomalous Hall response upon doping. From the systematic symmetry analysis, we uncover that the large anomalous Hall effect arises due to a combination of broken time-reversal and crystal symmetries caused by the arrangement of non-magnetic atoms (Sr and O) in the SRO monolayer. We identify the emergent Hall effect as a clear manifestation of the so-called crystal Hall effect in terminology of v{S}mejkal et al. arXiv:1901.00445 (2019), and demonstrate that it persists at finite frequencies which is the manifestation of the crystal magneto-optical effect. Moreover, we find a colossal dependence of the AHE on the degree of crystal symmetry breaking also in ferromagnetic SRO films, which all together points to an alternative explanation of the emergence of the topological Hall effect observed in this type of systems.
Motivated by the recently observed unconventional Hall effect in ultra-thin films of ferromagnetic SrRuO$_3$ (SRO) we investigate the effect of strain-induced oxygen octahedral distortion in the electronic structure and anomalous Hall response of the SRO ultra-thin films by virtue of density functional theory calculations. Our findings reveal that the ferromagnetic SRO films grown on SrTiO$_3$ (in-plane strain of $-$0.47$%$) have an orthorhombic (both tilting and rotation) distorted structure and with an increasing amount of substrate-induced compressive strain the octahedral tilting angle is found to be suppressed gradually, with SRO films grown on NdGaO$_3$ (in-plane strain of $-$1.7$%$) stabilized in the tetragonal distorted structure (with zero tilting). Our Berry curvature calculations predict a positive value of the anomalous Hall conductivity of $+$76,S/cm at $-$1.7$%$ strain, whereas it is found to be negative ($-$156,S/cm) at $-$0.47$%$ strain. We attribute the found behavior of the anomalous Hall effect to the nodal point dynamics in the electronic structure arising in response to tailoring the oxygen octahedral distortion driven by the substrate-induced strain. We also calculate strain-mediated anomalous Hall conductivity as a function of reduced magnetization obtained by scaling down the magnitude of the exchange field inside Ru atoms finding good qualitative agreement with experimental observations, which indicates a strong impact of longitudinal thermal fluctuations of Ru spin moments on the anomalous Hall effect in this system.
The anomalous Hall effect (AHE) of epitaxial SrRuO$_3$ films with varying lattice parameters is investigated, and analyzed according to the Berry-phase scenario. SrRuO$_3$ thin films were deposited on SrTiO$_3$ substrates directly, or using intermediate buffer layers, in order to finely control the epitaxial strain. The AHE of the different films exhibits intrinsic features such as the sign change of the Hall resistivity with the temperature, even for small thicknesses of SrRuO$_3$. However, the anomalous Hall conductivity is greatly reduced from its intrinsic value as the carrier scattering is increased when the epitaxial strain is released. We argue that the AHE of fully strained SrRuO$_3$ film with low residual resistivity represents the intrinsic AHE of SrRuO$_3$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا