Do you want to publish a course? Click here

Crystal Hall and crystal magneto-optical effect in thin films of SrRuO$_3$

110   0   0.0 ( 0 )
 Added by Kartik Samanta
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the recently observed topological Hall effect in ultra-thin films of SrRuO$_3$ (SRO) grown on SrTiO$_3$ (STO) [001] substrate, we investigate the magnetic ground state and anomalous Hall response of the SRO ultra-thin films by virtue of spin density functional theory (DFT). Our findings reveal that in the monolayer limit of an SRO film, a large energy splitting of Ru-$t_{2g}$ states stabilizes an anti-ferromagnetic (AFM) insulating magnetic ground state. For the AFM ground state, our Berry curvature calculations predict a large anomalous Hall response upon doping. From the systematic symmetry analysis, we uncover that the large anomalous Hall effect arises due to a combination of broken time-reversal and crystal symmetries caused by the arrangement of non-magnetic atoms (Sr and O) in the SRO monolayer. We identify the emergent Hall effect as a clear manifestation of the so-called crystal Hall effect in terminology of v{S}mejkal et al. arXiv:1901.00445 (2019), and demonstrate that it persists at finite frequencies which is the manifestation of the crystal magneto-optical effect. Moreover, we find a colossal dependence of the AHE on the degree of crystal symmetry breaking also in ferromagnetic SRO films, which all together points to an alternative explanation of the emergence of the topological Hall effect observed in this type of systems.



rate research

Read More

Ferromagnetism and exotic topological structures in SrRuO$_3$ (SRO) induce sign-changing anomalous Hall effect (AHE). Recently, hump structures have been reported in the Hall resistivity of SRO thin films, especially in the ultra-thin regime. We investigate the AHE and hump structure in the Hall resistivity of SRO ultra-thin films with an SrTiO$_3$ (STO) capping layer and ionic liquid gating. STO capping results in sign changes in the AHE and modulation of the hump structure. In particular, the hump structure in the Hall resistivity is strongly modulated and even vanishes in STO-capped 4 unit cell (uc) films. In addition, the conductivity of STO-capped SRO ultra-thin films is greatly enhanced with restored ferromagnetism. We also performed ionic liquid gating to modulate the electric field at SRO/STO interface. Drastic changes in the AHE and hump structure are observed with different gate voltages. Our study shows that the hump structure as well as the AHE can be controlled by tuning inversion symmetry and the electric field at the interface.
Motivated by the recently observed unconventional Hall effect in ultra-thin films of ferromagnetic SrRuO$_3$ (SRO) we investigate the effect of strain-induced oxygen octahedral distortion in the electronic structure and anomalous Hall response of the SRO ultra-thin films by virtue of density functional theory calculations. Our findings reveal that the ferromagnetic SRO films grown on SrTiO$_3$ (in-plane strain of $-$0.47$%$) have an orthorhombic (both tilting and rotation) distorted structure and with an increasing amount of substrate-induced compressive strain the octahedral tilting angle is found to be suppressed gradually, with SRO films grown on NdGaO$_3$ (in-plane strain of $-$1.7$%$) stabilized in the tetragonal distorted structure (with zero tilting). Our Berry curvature calculations predict a positive value of the anomalous Hall conductivity of $+$76,S/cm at $-$1.7$%$ strain, whereas it is found to be negative ($-$156,S/cm) at $-$0.47$%$ strain. We attribute the found behavior of the anomalous Hall effect to the nodal point dynamics in the electronic structure arising in response to tailoring the oxygen octahedral distortion driven by the substrate-induced strain. We also calculate strain-mediated anomalous Hall conductivity as a function of reduced magnetization obtained by scaling down the magnitude of the exchange field inside Ru atoms finding good qualitative agreement with experimental observations, which indicates a strong impact of longitudinal thermal fluctuations of Ru spin moments on the anomalous Hall effect in this system.
We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component behavior. One component of the MOKE signal tracks the average magnetization, while the second anomalous component bears a resemblance to anomalies in the Hall resistivity which have been previously reported in skyrmion materials. We present a theory showing that the MOKE anomalies arise from the non-monotonic relation between the Kerr angle and the magnetization, when we average over magnetic domains which proliferate near the coercive field. Our results suggest that inhomogeneous domain formation, rather than skyrmions, may provide a common origin for the observed MOKE and Hall resistivity anomalies.
Magnetite epitaxial thin films have been prepared by pulsed laser deposition at 340 C on MgO and Si substrates. One key result is that the thin film properties are almost identical to the properties of bulk material. For 40 - 50 nm thick films, the saturation magnetization and conductivity are respectively 453 emu/cm^3 and 225 1/(Ohm cm) at room temperature. The Verwey transition is at 117 K. The Hall effect indicates an electron concentration corresponding to 0.22 electrons per formula unit at room temperature. Normal and anomalous Hall effect both have a negative sign.
The anomalous Hall effect (AHE) of epitaxial SrRuO$_3$ films with varying lattice parameters is investigated, and analyzed according to the Berry-phase scenario. SrRuO$_3$ thin films were deposited on SrTiO$_3$ substrates directly, or using intermediate buffer layers, in order to finely control the epitaxial strain. The AHE of the different films exhibits intrinsic features such as the sign change of the Hall resistivity with the temperature, even for small thicknesses of SrRuO$_3$. However, the anomalous Hall conductivity is greatly reduced from its intrinsic value as the carrier scattering is increased when the epitaxial strain is released. We argue that the AHE of fully strained SrRuO$_3$ film with low residual resistivity represents the intrinsic AHE of SrRuO$_3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا