No Arabic abstract
State-of-the-art multi-object tracking~(MOT) methods follow the tracking-by-detection paradigm, where object trajectories are obtained by associating per-frame outputs of object detectors. In crowded scenes, however, detectors often fail to obtain accurate detections due to heavy occlusions and high crowd density. In this paper, we propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes. Using crowd density maps, we jointly model detection, counting, and tracking of multiple targets as a network flow program, which simultaneously finds the global optimal detections and trajectories of multiple targets over the whole video. This is in contrast to prior MOT methods that either ignore the crowd density and thus are prone to errors in crowded scenes, or rely on a suboptimal two-step process using heuristic density-aware point-tracks for matching targets.Our approach yields promising results on public benchmarks of various domains including people tracking, cell tracking, and fish tracking.
Crowd counting is a challenging task due to the issues such as scale variation and perspective variation in real crowd scenes. In this paper, we propose a novel Cascaded Residual Density Network (CRDNet) in a coarse-to-fine approach to generate the high-quality density map for crowd counting more accurately. (1) We estimate the residual density maps by multi-scale pyramidal features through cascaded residual density modules. It can improve the quality of density map layer by layer effectively. (2) A novel additional local count loss is presented to refine the accuracy of crowd counting, which reduces the errors of pixel-wise Euclidean loss by restricting the number of people in the local crowd areas. Experiments on two public benchmark datasets show that the proposed method achieves effective improvement compared with the state-of-the-art methods.
Dense crowd counting aims to predict thousands of human instances from an image, by calculating integrals of a density map over image pixels. Existing approaches mainly suffer from the extreme density variances. Such density pattern shift poses challenges even for multi-scale model ensembling. In this paper, we propose a simple yet effective approach to tackle this problem. First, a patch-level density map is extracted by a density estimation model and further grouped into several density levels which are determined over full datasets. Second, each patch density map is automatically normalized by an online center learning strategy with a multipolar center loss. Such a design can significantly condense the density distribution into several clusters, and enable that the density variance can be learned by a single model. Extensive experiments demonstrate the superiority of the proposed method. Our work outperforms the state-of-the-art by 4.2%, 14.3%, 27.1% and 20.1% in MAE, on ShanghaiTech Part A, ShanghaiTech Part B, UCF_CC_50 and UCF-QNRF datasets, respectively.
Crowd counting from unconstrained scene images is a crucial task in many real-world applications like urban surveillance and management, but it is greatly challenged by the cameras perspective that causes huge appearance variations in peoples scales and rotations. Conventional methods address such challenges by resorting to fixed multi-scale architectures that are often unable to cover the largely varied scales while ignoring the rotation variations. In this paper, we propose a unified neural network framework, named Deep Recurrent Spatial-Aware Network, which adaptively addresses the two issues in a learnable spatial transform module with a region-wise refinement process. Specifically, our framework incorporates a Recurrent Spatial-Aware Refinement (RSAR) module iteratively conducting two components: i) a Spatial Transformer Network that dynamically locates an attentional region from the crowd density map and transforms it to the suitable scale and rotation for optimal crowd estimation; ii) a Local Refinement Network that refines the density map of the attended region with residual learning. Extensive experiments on four challenging benchmarks show the effectiveness of our approach. Specifically, comparing with the existing best-performing methods, we achieve an improvement of 12% on the largest dataset WorldExpo10 and 22.8% on the most challenging dataset UCF_CC_50.
Most of Multiple Object Tracking (MOT) approaches compute individual target features for two subtasks: estimating target-wise motions and conducting pair-wise Re-Identification (Re-ID). Because of the indefinite number of targets among video frames, both subtasks are very difficult to scale up efficiently in end-to-end Deep Neural Networks (DNNs). In this paper, we design an end-to-end DNN tracking approach, Flow-Fuse-Tracker (FFT), that addresses the above issues with two efficient techniques: target flowing and target fusing. Specifically, in target flowing, a FlowTracker DNN module learns the indefinite number of target-wise motions jointly from pixel-level optical flows. In target fusing, a FuseTracker DNN module refines and fuses targets proposed by FlowTracker and frame-wise object detection, instead of trusting either of the two inaccurate sources of target proposal. Because FlowTracker can explore complex target-wise motion patterns and FuseTracker can refine and fuse targets from FlowTracker and detectors, our approach can achieve the state-of-the-art results on several MOT benchmarks. As an online MOT approach, FFT produced the top MOTA of 46.3 on the 2DMOT15, 56.5 on the MOT16, and 56.5 on the MOT17 tracking benchmarks, surpassing all the online and offline methods in existing publications.
In this paper, we propose a novel map for dense crowd localization and crowd counting. Most crowd counting methods utilize convolution neural networks (CNN) to regress a density map, achieving significant progress recently. However, these regression-based methods are often unable to provide a precise location for each person, attributed to two crucial reasons: 1) the density map consists of a series of blurry Gaussian blobs, 2) severe overlaps exist in the dense region of the density map. To tackle this issue, we propose a novel Focal Inverse Distance Transform (FIDT) map for crowd localization and counting. Compared with the density maps, the FIDT maps accurately describe the peoples location, without overlap between nearby heads in dense regions. We simultaneously implement crowd localization and counting by regressing the FIDT map. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art localization-based methods in crowd localization tasks, achieving very competitive performance compared with the regression-based methods in counting tasks. In addition, the proposed method presents strong robustness for the negative samples and extremely dense scenes, which further verifies the effectiveness of the FIDT map. The code and models are available at https://github.com/dk-liang/FIDTM.